Изобретение относится к технологии машиностроения, к изготовлению алмазно-абразивного отрезного инструмента, и может быть использовано при изготовлении скоростных отрезных кругов, применяемых в черной металлургии при резке на абразивно-отрезных станках заготовок из конструкционных, инструментальных коррозионностойких и жаропрочных сталей и сплавов.
Известен абразивный отрезной круг, на торцовой поверхности которого имеются выступы в виде равнобедренного треугольника, чередующиеся с впадинами [1].
Недостатками известного инструмента являются повышенные тепловыделения и быстрый износ кругов, особенно по вершинам выступов, т.е. по торцам, при этом малая осевая жесткость, которой обладают данные круги, ведет к снижению их работоспособности и снижению качества.
Известен алмазно-абразивный отрезной круг, который установлен на шпинделе под острым углом α к плоскости, перпендикулярной оси вращения, при этом высота круга меньше ширины прорезаемого паза, а угол установки определен по формуле
α=arctg[(H-B)/D],
где В и D - соответственно высота и наружный диаметр круга, мм;
Н - ширина прорезаемого паза, мм;
α - угол наклона круга к плоскости, перпендикулярной оси вращения, град [2].
При этом правка его периферийной поверхности произведена при нулевом угле установки круга на шпинделе, а установка и регулировка угла наклона α - с помощью косых шайб, попарно установленных с торцов круга. Кроме того, компенсация износа торцовых поверхностей произведена путем увеличения угла наклона α, а форма правки периферийной поверхности зависит от осевой жесткости, причем правка толстых жестких кругов произведена по цилиндрической образующей периферийной поверхности, а тонких с малой осевой жесткостью кругов - с образованием V-образной в продольном сечении формы образующей с вершиной в плоскости симметрии, перпендикулярной оси вращения круга, лежащей на максимальном наружном диаметре.
Недостатками известного инструмента являются пониженная механическая прочность, невысокая стойкость и быстрый износ кругов, особенно по торцам, сложность и трудоемкость правки, что снижает производительность резания и удорожает процесс.
Задача изобретения - увеличение стойкости, механической прочности отрезных кругов и производительности резания, уменьшение опасности появления прижогов путем снижения теплонапряженности резания благодаря осцилляции зоны резания и исключение прогиба синусоидального круга.
Это достигается применением алмазно-абразивного отрезного круга с аксиально-смещенной периферийной режущей частью и расположенными на его торцовых поверхностях рифлениями, характеризующийся тем, что он выполнен в виде ступицы и синусоидального диска из условия образования радиальных торцевых впадин и выступов, расположенных в шахматном порядке на торцах круга, при этом рифления шириной h=B/2, равной половине высоты режущей части круга, расположены только во впадинах по спирали Архимеда, причем плоскость выступов рифлений наклонена под углом β=1°...2° в радиальном направлении в сторону центра круга, при этом спирали рифлений выполнены многозаходными с четным количеством заходов, а начало Архимедовой спирали на каждом из торцов круга совпадает с одной из его образующей, кроме того, величина амплитуды Ас синусоиды равна половине высоты В/2 режущей части диска круга, а число торцовых выступов n определяется в зависимости от степени понижения температуры по формуле
n=π·D/P,
где D - наружный диаметр круга, м;
Р - период синусоиды, м, определяемый по формуле
P=2(H/2)2·Vи·C/(10·a),
Н - полная высота круга по вершинам синусоиды, равная ширине прорезаемого паза, м;
Vи - частота вращения инструмента, м/с;
а - температуропроводность материала заготовки, м2/с;
С - коэффициент синусоидальности, определяемый по формуле
C=(1-kk)/(kA+kB·Vотн),
Vотн - относительная скорость перемещения заготовки, определяемая по формуле
vотн=Vз·Н/2а,
Vз - частота вращения заготовки, м/с;
kA - коэффициент, зависящий от степени понижения температуры и принимающий значения 1,0; 1,0; 4,0; 5,0 при понижении температуры соответственно на 10%, 20%, 30% и 40%;
kB - коэффициент, зависящий от степени понижения температуры и принимающий значения 0,1; 0,32; 0,75; 1,7 при понижении температуры соответственно на 10%, 20%, 30% и 40%;
kk - коэффициент, зависящий от относительной скорости и принимающий значения 0,18; 0,28; 0,53; 0,74 при понижении температуры соответственно на 10%, 20%, 30% и 40%.
Сущность конструкции круга поясняется чертежами.
На фиг.1 приведены схема разрезания заготовки и общий вид алмазно-абразивного отрезного круга, имеющего ступицу, синусоидальный диск с периферийным аксиально-смещенным режущим слоем и рифления во впадинах синусоиды, частичный продольный разрез; на фиг.2 - отрезной круг, вид на торцовую поверхность слева по А на фиг.1; на фиг.3 - общий вид отрезного круга, рифления условно показаны в одной впадине; на фиг.4 - схема разрезания круглой заготовки.
Предлагаемый синусоидальный алмазно-абразивный круг имеет синусоидальный диск 1 с периферийным аксиально-смещенным режущим слоем из условия образования радиальных торцевых впадин 2 и выступов 3, расположенных в шахматном порядке на торцах диска 1 и расходящихся веером от центра к периферии. Для надежного крепления круга он имеет ступицу 4.
Высота В синусоидальной части режущего диска 1 меньше ширины Н прорезаемого паза заготовки 5, это позволяет прерывать резание в некоторых поперечных сечениях, снижая температуру резания, и исключить прижоги и микротрещины на обрабатываемых поверхностях.
С целью увеличения осевой жесткости режущего диска 1, он имеет на торцах рабочей поверхности во впадинах рифления 6, выполненные по Архимедовым многозаходным спиралям. На фиг.1-4 рифления 6 условно выделены более густым фоном, а круг имеет двухзаходные спирали, при этом на фиг.3 представлен общий вид отрезного синусоидального круга, у которого рифления условно показаны в одной впадине.
Ширина h рифлений 6 назначается исходя из общей жесткости круга и возможности его формования и приблизительно равна половине высоты В режущего диска 1, при этом для снижения сил трения плоскость выступов 7 рифлений 6 наклонена под углом β=1°...2° в радиальном направлении в сторону центра круга, причем спирали рифлений выполнены многозаходными с четным количеством заходов, а начало Архимедовой спирали на каждом из торцов круга совпадает с одной из его образующей.
Для разрезания полупроводниковых пластин используют тонкие, шириной, составляющей доли миллиметра, отрезные алмазные круги, от осевой жесткости которых зависит не только работоспособность самих кругов, но и качество, прежде всего точность, обработанной поверхности [3]. Такие круги будем считать кругами с низкой осевой жесткостью.
Благодаря рифлениям и синусоидальности предлагаемые отрезные круги приобретают достаточно высокую осевую жесткость.
В работе алмазно-абразивного отрезного круга с синусоидальной периферийной режущей частью диска 1 появляется параметрическая осцилляция, характеризуемая амплитудой Ас, влияющая на ширину Н прорезаемого паза.
Благодаря осцилляции зоны резания высоту диска 1 берут меньше ширины прорезаемого паза, что существенно влияет на экономию дорогостоящего алмазно-абразивного материала.
Число торцовых выступов n синусоидального диска определяется в зависимости от степени понижения температуры [4] по формуле
n=π·D/P,
где D - наружный диаметр круга, м;
Р - период синусоиды, м, определяемый по формуле
P=2(H/2)2·Vи·C/(10·a),
Н - полная высота круга по вершинам синусоиды, равная ширине прорезаемого паза, м;
Vи - частота вращения инструмента, м/с;
а - температуропроводность материала заготовки, м2/с;
С - коэффициент синусоидальности, определяемый по формуле
C=(1-kk)/(kA+kB·Vотн),
Vотн - относительная скорость перемещения заготовки, определяемая по формуле
Vотн=Vз·Н/2a,
Vз - частота вращения заготовки, м/с;
kА - коэффициент, зависящий от степени понижения температуры и принимающий значения 1,0; 1,0; 4,0; 5,0 при понижении температуры соответственно на 10%, 20%, 30% и 40%;
kВ - коэффициент, зависящий от степени понижения температуры и принимающий значения 0,1; 0,32; 0,75; 1,7 при понижении температуры соответственно на 10%, 20%, 30% и 40%;
kk - коэффициент, зависящий от относительной скорости и принимающий значения 0,18; 0,28; 0,53; 0,74 при понижении температуры соответственно на 10%, 20%, 30% и 40%.
Величина амплитуды Ас равна половине высоты В синусоидального диска.
Предлагаемый круг имеет удобную для закрепления его на шпинделе ступицу 4 с торцами, перпендикулярными продольной оси, а диск 1 - синусоидальную форму с периферийным аксиально-смещенным режущим слоем и позволяет:
- снизить температуру шлифования в зоне контакта на 30...40%;
- резать заготовки на более форсированных режимах, не вызывая появления прижогов и микротрещин. За счет этого производительность обработки возрастает в 1,2...1,3 раза;
- сохранять длительное время хорошую режущую способность зерен, работающих в режиме самозатачивания, общую стойкость кругов увеличить в 2...3 раза;
- сократить брак и добиться виброустойчивости на операциях резки заготовок из сталей и сплавов, предрасположенных к прижогам и трещинам.
Пример. Для определения преимуществ предложенной конструкции отрезного круга и способа резки была изготовлена по технологии силовой бакелизации партия отрезных кругов новой конструкции диаметром 500 мм и проведены сравнительные испытания с серийными кругами в заводских условиях при резке стали 12Х2Н4А диаметром 80 мм, результаты которых представлены в таблице.
Определены геометрические параметры абразивного отрезного круга с синусоидальной торцовой поверхностью для резки.
Режимы шлифования: частота вращения круга - Vи=80 м/с; частота вращения заготовки - Vз=0,5 м/с; глубина резания, равная ширине прорезаемого паза t=0,005·10-3 м; наружный диаметр инструмента - Dи=0,5 м; высота диска - В=0,003 м; Н=0,005 мм; материал заготовки - сталь 12Х2Н4А с температуропроводностью - а=3·10-6 м2/с; степень понижения температуры - kТ=30%.
Определяем относительную скорость перемещения заготовки по формуле
Vотн=Vз·Н/2a=0,5·0,005/2·3·10-6≈416,7.
Определяем коэффициент синусоидальности по формуле
С=(1-kk)/(kA+kB·Vотн)=(1-0,52)/(4+0,75·416/7)=0,00151.
Определяем величину периода синусоиды по формуле
Р=2(Н/2)2·vи·С/(10·а)=2(0,005/2)2·80·0,00151/10·3·10-6=0,05 м.
Из полученных данных определяем число торцовых выступов на круге с синусоидальной периферией диаметром 500 мм
n=πD/Р=3,14·500/50≈31,4.
Округляем число торцовых выступов до n=32 и определяем параметры алмазно-абразивного круга с синусоидальной периферией
Р=πD/n=3,14·500/32=49 мм.
Определяем величину амплитуды Ас=В/2=1,5 мм, принимаем Ас=2 мм.
Пример 2. По данным примера 1 определить число торцовых выступов для понижения температуры на 10%, 20% и 40%.
Произведя расчеты по вышеприведенным формулам, определяем число торцовых выступов для понижения температуры на 10%, 20% и 40% для круга диаметром 500 мм соответственно n10%=2; n20%=9; n40%=130.
Новая конструкция круга обеспечивает повышение коэффициента шлифования в среднем на 45%, стойкости круга на 45%, повышение производительности на 30%.
Наличие у круга у торцовых поверхностей радиальных пазов обеспечивает уменьшение температуры заготовки вследствие меньшего трения круга о поверхность заготовки, а это, безусловно, уменьшает опасность появления прижогов и шлифовочных трещин на прорезаемой поверхности.
Таким образом, предлагаемый алмазно-абразивный отрезной синусоидальный круг с рифлениями на торцах уменьшает опасность появления прижогов путем снижения теплонапряженности резания за счет осцилляции зоны контакта круга с заготовкой и прерывистого резания, обладает повышенной износостойкостью благодаря включению в работу торцовых частей круга, повышенной осевой жесткостью и прочностью и обеспечивает повышенную производительность резки при снижении расхода абразива.
Источники информации
1. А.с. СССР №306011, МКИ В 24 D 5/12. Абразивный отрезной круг. 1971 - аналог.
2. Патент РФ 2235632, МКИ В 24 D 5/12. Алмазно-абразивный отрезной круг с параметрической осцилляцией. Ю.С.Степанов, Б.И.Афанасьев и др. №2003129219, заяв. 30.09.2003, опуб. 10.09.2004. Бюл. №25 - прототип.
3. Петасюк Г.А. Точность разрезания полупроводниковых пластин алмазными кругами // СТИН - 1998. - №3. - С.24-27.
4. Якимов А.В. Абразивно-алмазная обработка фасонных поверхностей. - М.: Машиностроение, 1984. - С.118-124.
название | год | авторы | номер документа |
---|---|---|---|
СТОЙКИЙ ОСЦИЛЛИРУЮЩИЙ ОТРЕЗНОЙ КРУГ | 2005 |
|
RU2279967C1 |
СИНУСОИДАЛЬНЫЙ АЛМАЗНО-АБРАЗИВНЫЙ КРУГ | 2004 |
|
RU2275294C1 |
СПОСОБ ОСЦИЛЛИРУЮЩЕЙ АЛМАЗНО-АБРАЗИВНОЙ РЕЗКИ | 2005 |
|
RU2278015C1 |
СПОСОБ ПОДАЧИ СМАЗОЧНО-ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ В ЗОНУ ШЛИФОВАНИЯ | 2004 |
|
RU2274539C1 |
УСТРОЙСТВО ПОДАЧИ СМАЗОЧНО-ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ | 2004 |
|
RU2271920C1 |
СПОСОБ АЛМАЗНО-АБРАЗИВНОЙ ОБРАБОТКИ ПАЗОВ ОТРЕЗНЫМИ КРУГАМИ С ПАРАМЕТРИЧЕСКОЙ ОСЦИЛЛЯЦИЕЙ | 2003 |
|
RU2235629C1 |
АЛМАЗНО-АБРАЗИВНЫЙ ОТРЕЗНОЙ КРУГ С ПАРАМЕТРИЧЕСКОЙ ОСЦИЛЛЯЦИЕЙ | 2003 |
|
RU2235632C1 |
СБОРНЫЙ ПРЕРЫВИСТЫЙ АЛМАЗНО-АБРАЗИВНЫЙ КРУГ ДЛЯ ВНУТРЕННЕЙ ОБРАБОТКИ КАНАВОК ВРЕЗАНИЕМ | 2004 |
|
RU2275296C1 |
УПРУГИЙ АЛМАЗНО-АБРАЗИВНЫЙ ИНСТРУМЕНТ ДЛЯ ВНУТРЕННЕЙ ОБРАБОТКИ КАНАВОК ВРЕЗАНИЕМ | 2006 |
|
RU2327557C1 |
СПОСОБ ПРЕРЫВИСТОЙ АЛМАЗНО-АБРАЗИВНОЙ ОБРАБОТКИ ВРЕЗАНИЕМ ВНУТРЕННИХ КАНАВОК | 2006 |
|
RU2329130C1 |
Изобретение относится к области абразивной обработки и может быть использовано при изготовлении скоростных алмазно-абразивных кругов, применяемых в черной металлургии для резки на абразивно-отрезных станках заготовок из конструкционных, инструментальных коррозионностойких и жаропрочных сталей и сплавов. Круг имеет ступицу и синусоидальный диск с периферийной аксиально-смещенной режущей частью и с рифлениями на торцах. Диск выполнен из условия образования радиальных торцовых впадин и выступов, расположенных в шахматном порядке на торцах круга. Величина амплитуды синусоиды и ширина рифлений равны половине высоты режущей части диска. Рифления расположены только во впадинах синусоидального диска по спирали Архимеда. Плоскость выступов рифлений наклонена под углом β=1°...2° в радиальном направлении в сторону центра круга. Спирали рифлений выполнены многозаходными с четным количеством заходов, а начало спирали Архимеда на каждом из торцов круга совпадает с одной из его образующих. Приведена расчетная формула для определения количества торцовых выступов в зависимости от степени понижения температуры. Такая конструкция снижает теплонапряженность резания за счет осцилляции режущей части круга, увеличивает его износостойкость, повышает механическую прочность круга и производительность резания с исключением прогиба круга. 4 ил., 1 табл.
Алмазно-абразивный отрезной круг, имеющий аксиально смещенную периферийную режущую часть и расположенные на его торцовых поверхностях рифления, отличающийся тем, что он выполнен в виде ступицы и синусоидального диска с радиальными торцевыми впадинами и выступами, расположенными в шахматном порядке на торцах круга, рифления выполнены шириной h, равной половине высоты В режущей части круга, и расположены только во впадинах синусоидального диска по спирали Архимеда, при этом плоскость выступов рифлений наклонена под углом β=1...2° в радиальном направлении в сторону центра круга, спирали рифлений выполнены многозаходными с четным количеством заходов, а начало спирали Архимеда на каждом из торцов круга совпадает с одной из его образующих, причем величина амплитуды Ас синусоиды равна половине высоты В режущей части диска, а число его торцовых выступов n определено в зависимости от степени понижения температуры шлифования по формуле
n=π·D/P,
где D - наружный диаметр круга, м;
Р - период синусоиды, м, определяемый по формуле
Р=2(Н/2)2·Vи·С/(10·а),
Н - полная высота круга по вершинам синусоиды, равная ширине прорезаемого паза заготовки, м;
Vи - частота вращения круга, м/с;
а - температуропроводность материала заготовки, м2/с;
С - коэффициент синусоидальности, определяемый по формуле
C=(1-kk)/(kA+kB·Vотн),
Vотн - относительная скорость перемещения заготовки, определяемая по формуле
Vотн=Vз·Н/2а,
Vз - частота вращения заготовки, м/с;
kA - коэффициент, зависящий от степени понижения температуры шлифования и принимающий значения - 1,0; 1,0; 4,0; 5,0 при понижении температуры соответственно на 10%, 20%, 30% и 40%;
kB - коэффициент, зависящий от степени понижения температуры шлифования и принимающий значения - 0,1; 0,32; 0,75; 1,7 при понижении температуры соответственно на 10%, 20%, 30% и 40%;
kk - коэффициент, зависящий от относительной скорости и принимающий значения - 0,18; 0,28; 0,53; 0,74 при понижении температуры шлифования соответственно на 10%, 20%, 30% и 40%.
АЛМАЗНО-АБРАЗИВНЫЙ ОТРЕЗНОЙ КРУГ С ПАРАМЕТРИЧЕСКОЙ ОСЦИЛЛЯЦИЕЙ | 2003 |
|
RU2235632C1 |
АЗНЫЙ ОТРЕЗНОЙ КРУГ ГОДОВСКОГОВСЕСОЮЗНАЯ"AT:iiTHa-TCX;^:i^E?«AfiL'--i&.fS>&1orEHA | 0 |
|
SU306011A1 |
Абразивный отрезной круг | 1983 |
|
SU1140943A1 |
US 3742655 A, 03.07.1973. |
Авторы
Даты
2006-09-27—Публикация
2005-02-15—Подача