СТЕРЖЕНЬ ДЛЯ АРМИРОВАНИЯ БЕТОНА Российский патент 2006 года по МПК C04B26/16 E04C5/07 

Описание патента на изобретение RU2286315C1

Изобретение относится к строительству, а именно к изготовлению пластиковых стержней из минеральных волокон, пропитанных связующим, которые могут использоваться в качестве арматуры строительного назначения для армирования трехслойных стеновых конструкций (в качестве гибких связей), монолитных железобетонных и сборных конструкций; в конструктивных элементах зданий в виде отдельных стержней; для армирования грунта оснований зданий и сооружений и т.д.

Полимерное связующее определяет все основные свойства волокнистых композитов: прочность, деформативность, водо- и химическая стойкость, огне- и теплостойкость, электроизоляционные и другие характеристики.

Известен стержень для армирования бетона из стеклопластика на основе стекловолокна и смеси эпоксидных и фенолформальдегидных смол в качестве связующего с добавлением растворителей, ускорителей и отвердителя (DE 37039774, кл Е 04 С 5/07, опубликован в 1988 г.).

Недостатками данного стержня является сложность технологии изготовления ввиду наличия в связующем растворителей, которые должны быть удалены из полимерной композиции, а также низкая стойкость в кислой и щелочной средах.

Также известен стержень из стеклопластика для армирования бетона, полученный путем пропитки стекловолокнистого ровинга эпоксидной диановой смолой с изометилтетрагидрофталиевым ангидридом (Изо-МТГФА) в качестве отвердителя и триэтаноламина в качестве ускорителя отверждения (RU 2220049 С2, В 32 В 17/04, Е 0 4 С 5/07, опубликован в 2003 г.).

Температура термоотверждения связующего для данного стержня снижена до 140°С, несколько упрощена технология его производства. Стержень отличается высокими прочностными характеристиками. Однако невысока теплостойкость (90-110°С) и огнестойкость применяемого полимерного связующего.

Наиболее близким аналогом является арматурный стержень из базальтопластика, изготовленный путем пропитки базальтового ровинга полимерным связующим на основе эпоксидной диановой смолы ЭД-20, отвердителя Изо-МТГФА и ускорителя полимеризации УП-606/2 с последующим ступенчатым термоотверждением с подъемом температуры до 180°С (SU 1761903, кл Е 04 С 05/07, опубликован в 1992 г.).

Указанный стержень обладает высокой прочностью и коррозионной стойкостью. Недостатком является сложная технология изготовления (процесс отверждения связующего) и низкая теплостойкость материала (120-130°С).

Кроме того, высока температура термоотверждения приведенных пластиков и, как следствие, значительны энергозатраты при производстве.

Задачей изобретения является повышение огне- и теплостойкости стержня для армирования бетона, упрощение технологии его изготовления при сохранении достаточно высоких прочностных характеристик с увеличением щелочестойкости.

Другой задачей является снижение энергозатрат на термоотверждение связующего за счет значительного уменьшения температуры тепловой обработки.

Результат достигается тем, что стержень для армирования бетона, полученный из волокнистого ровинга, пропитанного связующим, отличающийся тем, что в качестве связующего содержит гибридное связующее, включающее полиизоцианат и натриевое жидкое стекло с модулем 2-5, при следующем соотношении компонентов, мас.%:

Полиизоцианат 40-70

Жидкое натриевое стекло (М=2-5) 30-60

а отверждение осуществляют по ступенчатому температурному режиму:

1 этап: 65-80°С,

2 этап: 90-100°С,

протягиванием пропитанного связующим волокнистого ровинга через камеру полимеризации,

при этом соотношение волокнистого ровинга и связующего равно соответственно 65-85: 15-35 мас.%.

Для получения стержня используют следующие материалы:

Базальтовый ровинг по ТУ 5952-001-13307094-04;

Полиизоцианат (ПИЦ) марки «Корундинат ПМ 50-25» согласно ТУ 2472-002-02748978-2004;

Жидкое натриевое стекло с модулем М=2-5 по ТУ 2145-014-13002578-94.

Стержень изготавливают на технологической линии, включающей ванну для связующего, формовочный узел и камеру полимеризации связующего.

Процесс производства начинается со сматывания волокнистого ровинга из шпулярника с бобинами. Бобины устанавливают на этажерке. Далее волокнистый ровинг проходит через систему натяжителей для устранения разнодлинности нитей. Сформованный в жгут волокнистый ровинг проходи через пропиточную ванну со связующим, при этом соотношение ровинга и связующего должно находиться в пределах от 65:35 до 85:15 (в мас.%). Для приготовления гибридного полимернеорганического связующего в ванну дозируют расчетное количество компонентов связующего - ПИЦа и жидкого натриевого стекла и тщательно перемешивают в течение 120-180 сек. Примеры составов гибридного полимернеорганического связующего приведены в табл.1.

Затем осуществляется горячее формование поперечного сечения стержня в формовочном узле, где расположен ряд фильер с постепенно уменьшающимися диаметрами отверстий. Обжатие арматурного стержня в последовательно установленных фильерах обеспечивает получение плотной структуры пластикового стержня. За формовочным узлом расположен обмотчик, в котором производят спиральную обвивку "сырой" заготовки стержня крученой нитью. При обмотке нить натянута с определенным усилием, благодаря чему она вдавливается в тело стержня. За счет этого арматура получает дополнительное уплотнение. Стержень, обвитый спиральной нитью, приобретает периодический профиль, который в дальнейшем обеспечивает надежное сцепление арматуры с бетоном. Шаг спиральной обвивочной нити устанавливают в пределах 2...4 мм в зависимости от диаметра арматуры. После придания арматуре периодического профиля она поступает в камеру полимеризации. Полимеризацию связующего осуществляют по ступенчатому температурному режиму:

1 этап: 65-80°С;

2 этап: 90-100°С.

Затем стержень охлаждается на открытом участке конвейера, по которому с помощью протяжного механизма направляется на пост резки арматуры на прутки требуемой длины.

Образцы готовили при соотношении волокнистого ровинга и связующего, равном 70:30 (мас.%), при этом составы связующего приведены в табл.1.

Свойства стержня для армирования бетона приведены в табл.2.

Таблица 1
Составы связующего
№ составаСодержание компонентов, мас.%ПИЦНатриевое ЖС170302505034060

Таблица 2
Свойства стержней для армирования бетона
№ состава (связующего)*Плотность, кг/м3Теплостойкость по Вика, °СПотеря массы при горении в течение 2 мин, %Изменение массы стержня (%) после кипячения в течение 3-х часов в средах:Остаточная прочность (%) после испытания на химстойкость (кипячение в течение 3-х часов) вH2O2н.NaOH2н.HClH2O2н.NaOH2н.HCl12120>35050,45-2,5-0,690786822200>35030,6-2,3-0,7112818832250>35020,7-2-0,5778075Прототип2040-140,5-14-0,52543538

Как видно из табл.2, модификация изоцианатов жидкими стеклами привела к значительному увеличению огне- и теплостойкости при сохранении достаточно высоких прочностных характеристик.

Оптимальная температура отверждения разработанных связующих составляет всего 60-100°С, то есть в два раза ниже, чем у традиционных связующих для волокнистых наполнителей.

Себестоимость разработанного гибридного связующего в два раза ниже, чем у эпоксидных, винилэфирных и модифицированных эпоксидных связующих.

Также данное изобретение позволяет решить проблемы полимероемкости и стоимости, что закономерно приводит к росту конкурентоспособности.

Похожие патенты RU2286315C1

название год авторы номер документа
СТЕРЖЕНЬ ДЛЯ АРМИРОВАНИЯ БЕТОНА 2001
  • Николаев В.Н.
RU2220049C2
СТЕРЖЕНЬ ДЛЯ АРМИРОВАНИЯ БЕТОНА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2008
  • Проскурякова Елена Геннадьевна
  • Шведчиков Андрей Александрович
  • Лернер Яков Леонидович
  • Бурдин Иван Васильевич
RU2381905C2
КОМПОЗИТНОЕ АРМИРУЮЩЕЕ ИЗДЕЛИЕ 2011
  • Зубков Вячеслав Дмитриевич
  • Сарксян Вагаршак Борисович
  • Данилов Игорь Венедиктович
  • Ломакин Олег Геннадьевич
  • Максимов Дмитрий Андреевич
  • Бешлык Вячеслав Эдуардович
  • Фролов Григорий Витальевич
RU2461588C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ КОМПОЗИЦИОННОГО МАТЕРИАЛА 2012
  • Зубков Вячеслав Дмитриевич
  • Сарксян Вагаршак Борисович
  • Ломакин Олег Геннадьевич
  • Максимов Дмитрий Андреевич
  • Бешлык Вячеслав Эдуардович
  • Фролов Григорий Витальевич
RU2505403C1
Стержень для армирования бетона и способ его изготовления 1989
  • Авраменко Сония Хабибуловна
  • Асланова Людмила Григорьевна
  • Евгеньев Игорь Евгеньевич
  • Карпанова Валерия Евгеньевна
  • Коканов Иннокентий Иванович
  • Левченко Александр Леонидович
  • Лобанов Юрий Павлович
  • Ткачук Сергей Федосеевич
  • Шварц Борис Адольфович
SU1723284A1
АРМАТУРА КОМПОЗИТНАЯ 2012
  • Зубков Вячеслав Дмитриевич
  • Сарксян Вагаршак Борисович
  • Ломакин Олег Геннадьевич
  • Максимов Дмитрий Андреевич
  • Бешлык Вячеслав Эдуардович
  • Фролов Григорий Витальевич
RU2509653C1
ПОЛИМЕРНОЕ СВЯЗУЮЩЕЕ ДЛЯ КОМПОЗИТНОЙ АРМАТУРЫ 2010
  • Зубков Вячеслав Дмитриевич
  • Сарксян Вагаршак Борисович
  • Данилов Игорь Венедиктович
  • Ломакин Олег Геннадьевич
  • Максимов Дмитрий Андреевич
  • Бешлык Вячеслав Эдуардович
  • Фролов Григорий Витальевич
  • Мещеряков Юрий Яковлевич
RU2495892C2
КОМПОЗИЦИЯ ДЛЯ АРМИРОВАНИЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ 2012
  • Шабалин Семен Игоревич
  • Шахов Сергей Владимирович
  • Степанова Валентина Федоровна
RU2493337C1
Стержень для армирования бетона и способ его изготовления 1989
  • Авраменко Сония Хабибуловна
  • Асланова Людмила Григорьевна
  • Дроздова Валентина Ивановна
  • Карпанова Валерия Евгеньевна
  • Коканов Иннокентий Иванович
  • Лобанов Юрий Павлович
  • Мучник Зоя Михайловна
  • Недобор Любовь Григорьевна
  • Семченко Виталий Антонович
SU1723285A1
АРМАТУРА КОМПОЗИТНАЯ 2011
  • Кукин Антон Сергеевич
RU2482248C2

Реферат патента 2006 года СТЕРЖЕНЬ ДЛЯ АРМИРОВАНИЯ БЕТОНА

Изобретение относится к строительству, а именно к изготовлению пластиковых стержней из минеральных волокон, пропитанных связующим, которые могут использоваться в качестве арматуры строительного назначения для армирования трехслойных стеновых конструкций, монолитных железобетонных и сборных конструкций, в конструктивных элементах зданий в виде отдельных стержней, для армирования грунта оснований зданий и сооружений и т.д. Задачей изобретения является повышение огне- и теплостойкости стержня для армирования бетона, упрощение технологии его изготовления при сохранении достаточно высоких прочностных характеристик с увеличением щелочестойкости, снижение энергозатрат на термоотверждение связующего за счет значительного уменьшения температуры тепловой обработки. Поставленная задача решается тем, что стержень, полученный из волокнистого ровинга, пропитанного связующим, в качестве связующего содержит гибридное связующее, включающее полиизоцианат и натриевое жидкое стекло с модулем 2-5, при этом отверждение осуществляют по ступенчатому температурному режиму: 1 этап: 65-80°С, 2 этап: 90-100°С, протягиванием пропитанного связующим волокнистого ровинга через камеру полимеризации, при этом соотношение волокнистого ровинга и связующего равно соответственно: 65-85:15-35 мас.%. 2 табл.

Формула изобретения RU 2 286 315 C1

Стержень для армирования бетона, полученный из волокнистого ровинга, пропитанного связующим, отличающийся тем, что в качестве связующего содержит гибридное связующее, вкючающее полиизоцианат и натриевое жидкое стекло с модулем 2-5 при следующем соотношении компонентов, мас.%:

Полиизоцианат40-70Жидкое натриевое стекло с модулем 2-530-60

а отверждение осуществляют по ступенчатому температурному режиму:

1 этап: 65-80°С,

2этап:90-100°С,

протягиванием пропитанного связующим волокнистого ровинга через камеру полимеризации, при этом соотношение волокнистого ровинга и связующего равно соответственно 65-85: 15-35 мас.%.

Документы, цитированные в отчете о поиске Патент 2006 года RU2286315C1

Стержень для армирования бетона и способ его изготовления 1989
  • Авраменко Сония Хабибуловна
  • Асланова Людмила Григорьевна
  • Евгеньев Игорь Евгеньевич
  • Карпанова Валерия Евгеньевна
  • Коканов Иннокентий Иванович
  • Левченко Александр Леонидович
  • Недобор Любовь Григорьевна
  • Семченко Виталий Антонович
  • Ткачук Сергей Федосеевич
SU1761903A1
РЕГУЛЯТОР УРОВНЯ ЭЛЕКТРОПРОВОДЯЩЕЙ ЖИДКОСТИ В ВОДЯНЫХ БАЛЛОНАХ 0
  • Н. Т. Гребенюк, А. П. Дейнеко Г. С. Бутин
SU220049A1
DE 3703974 A1, 18.08.1988
DE 2932809 A1, 26.03.1981.

RU 2 286 315 C1

Авторы

Хозин Вадим Григорьевич

Абдрахманова Ляйля Абдулловна

Старовойтова Ирина Анатольевна

Даты

2006-10-27Публикация

2005-10-21Подача