СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ Российский патент 2006 года по МПК C21C5/28 

Описание патента на изобретение RU2289629C1

Изобретение относится к области металлургии, в частности выплавке стали в конвертере с верхним кислородным дутьем.

Известны способы выплавки стали в кислородных конвертерах с использованием верхней кислородной фурмы и подачей нейтрального газа: азота или аргона, через днище конвертера [1, 2]. Наряду с положительными результатами этого процесса, такими как снижение окисленности металла и шлака, более глубокое обезуглероживание, дополнительная дефосфорация и десульфурация металла комбинированный процесс имеет существенный недостаток, заключающийся в низкой стойкости огнеупоров днища по отношению к стойкости футеровки стен конвертера. Периодическая замена днища снижает производительность конвертерного агрегата.

Наиболее близким по технической сущности и полученным результатам к предлагаемому способу является способ выплавки стали в конвертере, заключающийся в том, что после окончания продувки расплава кислородом, на продувочную фурму переключают подачу азота. Металл продувают азотом с расходом 1,5-2,5 м3/мин на тонну стали в течение 20-240 с при положении фурмы, соответствующем периоду обезуглероживания при продувке металла кислородом. На плавках, с температурой металла на повалке, выше требуемой на 10-50°С во время продувки азотом, присаживают известь и (или) доломит с расходом 1-4 т/пл. [3].

Недостатком известного способа выплавки стали является то, что этот способ не позволяет существенно повысить стойкость футеровки конвертеров, в особенности в его верхней части. Объясняется это, во-первых, низким расходом азота (1,5-2,5 м3/мин на тонну стали), так как кинетической энергии струи азота не хватает создать значительное образование всплесков шлака, которые бы покрывали в виде гарнисажа футеровку конвертера. Во-вторых, присадка доломита и извести (1-4 т/пл.) в процессе продувки азотом не позволяет доломиту быстро растворяться в шлаковом расплаве во время подачи азота продолжительностью 20-240 с, при одновременном охлаждении шлака струей азота. Кроме этого, обожженный доломит имеет низкое содержание оксидов магния (30-35%), которое недостаточно для снижения коррозии огнеупоров под действием оксида железа шлака.

Техническим результатом является достижение насыщения конвертерных шлаков оксидами MgO, увеличение толщины гарнисажного слоя верхней части футеровки конвертера, снижение реакционной способности шлака к окислению огнеупоров кладки и, тем самым, повышение стойкости футеровки конвертера, увеличение выхода годной стали.

Это достигается тем, что в известном способе выплавки стали, включающем завалку лома, заливку чугуна, продувку расплава кислородом, присадку флюсующих материалов, подачу в расплав азота через верхнюю кислородную фурму, по предлагаемому решению продувку металла азотом производят с интенсивностью 2,6-6,0 м3/мин на тонну расплава, при этом за 1-5 минут перед продувкой расплава азотом в конвертер подают ожелезненный магнезиальный флюс, содержащий 15-95% оксидов магния и 2-15% оксидов железа в количестве 2-15 кг/т расплава.

Сущность способа заключается в том, что высокая интенсивность подачи азота в шлаковый расплав позволяет образовавшимся струям и брызгам шлака наносить на верхнюю часть футеровки вплоть до горловины конвертера более толстый шлаковый гарнисаж, так как шлаковый слой находится ближе к верхней части конвертера за счет высоты жидкого металла, в сравнении с нанесением шлакового гарнисажа на футеровку азотом после слива металла в ковш.

Присадка за 1-5 мин до подачи азота в шлаковый расплав ожелезненных магнезиальных материалов за счет высокой скорости их растворения позволяет повысить в шлаке количество оксидов магния. Высокая скорость растворения в шлаке флюсов обусловлена наличием в них легкоплавких ферритов кальция, содержание которых достигает 7-12%.

На стойкость футеровки конвертера существенное влияние оказывает содержание в шлаке оксидов железа, особенно при увеличении этих оксидов на конечной стадии продувки, когда достигаются высокие температуры металла с одновременным снижением содержания углерода в металле. В этот период перемешивание шлака и металла подачей азота с одновременным увеличением оксидов магния за счет ввода ожелезненных магнезиальных материалов снижает активность оксидов железа шлака и, тем самым, уменьшается агрессивное влияние конвертерного шлака на футеровку конвертера в период подачи азота на шлак.

Если интенсивность дутья азота составит величину менее 2,6 м3/мин на тонну стали, то в основном будет происходить слабое перемешивание металла и шлака, и кинетической энергии струи азота будет недостаточно для образования струй и брызг шлакового расплава, которые бы прочно наносились на футеровку конвертера, в особенности в его верхней части. В случае подачи азота с расходом более 6,0 м3/мин на тонну стали кинетическая энергия струи азота будет такой силы, что шлак будет выбрасываться за горловину конвертера, забрызгивая его шлемовую часть, попадая на рабочую площадку, что приведет к нарушению техники безопасности для обслуживающего персонала.

При присадках в конвертер ожелезненных магнезиальных флюсов менее чем за 1 мин до подачи азота флюсы не успеют раствориться в шлаке и, тем самым, шлак не будет насыщен оксидами магния. Присутствие в таком шлаке оксидов железа при нанесении его на футеровку конвертера будет приводить к повышенной коррозии огнеупоров футеровки. Если присадку флюсов в конвертер производить более чем за 5 мин до окончания продувки, то за счет охлаждающего действия навески флюса нарушается ровный ход обезуглероживания металла, в результате повысится расход кислорода на продувку или необходимо будет производить додувку металла на температуру и содержание углерода в металле перед его выпуском из конвертера.

Существенное влияние на изменение состава раздуваемого шлака, а также на скорость растворения в шлаке ожелезненных магнезиальных флюсов оказывает химсостав флюса.

Ожелезненные магнезиальные флюсы получают путем спекания во вращающейся печи тонкоизмельченных кальций и магнийсодержащих материалов (доломитизированная известь, доломит, сырой магнезит) совместно с железосодержащими материалами (конвертерный шлам, окалина, железная руда и т.п.). Поэтому в составе флюсов имеется определенное содержание оксидов кальция. Чем выше содержание во флюсе оксидов магния, тем меньше в нем содержится оксидов кальция. Например, во флюсе с содержанием 25% MgO, содержание СаО составляет 60-70%, а во флюсе с содержанием 95% MgO, содержание СаО составляет 1-2%. Учитывая, что в процессе спекания оксиды железа железосодержащих материалов образуют с оксидами кальция фазы в виде ферритов кальция с низкой температурой плавления (1200-1300°С), увеличение во флюсе оксидов кальция повышает в нем содержание ферритов и, тем самым, снижается температура плавления флюса, увеличивая скорость его растворения в шлаковом расплаве.

При присадках ожелезненного магнезиального флюса, содержащего менее 15% оксидов магния, при раздуве конвертерный шлак будет иметь низкое содержание оксидов магния, который не будет оказывать существенного влияния на коррозию огнеупоров футеровки. Если содержание оксидов магния во флюсе превысит величину 95%, то он плохо будет растворяться в шлаке за счет отсутствия в нем ферритов кальция.

На содержание во флюсе ферритов кальция естественно оказывает влияние содержание в нем оксидов железа. Если во флюсе содержание оксидов железа составит величину менее 2%, то флюс будет тугоплавким, плохо растворяться в шлаках за счет пониженного содержания во флюсах ферритов кальция. При содержании во флюсе оксидов железа более 15% увеличивается охлаждающий эффект от присадки этого флюса в шлаковый расплав.

Если количество ожелезненного магнезиального флюса составит величину менее 2,0 кг/т жидкой стали, то образующийся гарнисаж на футеровке будет иметь низкую концентрацию оксидов магния, и тем самым гарнисаж будет плохо защищать футеровку от окисления оксидов железа шлака. При присадках флюса более 15 кг/т жидкой стали за счет охлаждающей навески флюс не успеет раствориться в шлаке, что приведет к загущению шлака и образованию непрочного гарнисажного покрытия на футеровке.

Присутствие в ожелезненных магнезиальных флюсах легкоплавких ферритов кальция снижает температуру плавления флюса и, тем самым, для его расплавления требуется меньше тепловой энергии по сравнению с использованием доломита (прототип). Поэтому присадка в шлак ожелезненных магнезиальных флюсов приводит к меньшему охлаждающему действию на шлаковый расплав, что способствует к улучшению его жидкоподвижности. Учитывая, что при раздуве шлака азотом за счет поверхностного натяжения между шлаком и металлом в шлаке задерживается значительное количество корольков металла порядка 30-35% от веса шлака, присадка ожелезненных магнезиальных флюсов, уменьшая охлаждающий удар на шлаковый расплав снижает поверхностное натяжение между металлом и шлаком, в результате чего в шлаках задерживается меньшее количество корольков металла. Снижение в шлаке при присадке ожелезненных магнезиальных флюсов корольков металла при интенсивном перемешивании шлака азотом приводит к увеличению выхода годной стали, что определяет неочевидность заявляемого способа выплавки стали.

Параметры предлагаемого способа выплавки стали в конвертере установлены экспериментальным путем. Плавки проводили по способу, взятому за прототип, и по предлагаемой технологии в конвертере емкостью 350 тонн.

В конвертер завалили лом, залили чугун и начали продувку металла кислородом. В процессе продувки кислорода в конвертер присаживали известь и магнийсодержащие материалы: по известному способу - обожженный доломит, по заявляемому - ожелезненный известково-магнезиальный флюс. После завершения расчетного времени продувки плавки кислородом произвели подъем кислородной фурмы на высоту 6 м от уровня спокойного состояния ванны с отключением кислорода. После прекращения истечения кислорода из фурмы в нее подали азот с опусканием фурмы до 3 м от уровня спокойного состояния ванны. Расход азота составил 2,5 м3/мин·т стали на плавке с известным способом и 5,7 м3/мин·т стали по предлагаемому способу. В процессе подачи азота при известном способе ввели известь 1200 кг и сырой доломит в количестве 2500 кг, содержащий 19% MgO и 29% СаО. В предлагаемом способе ожелезненный магнезиальный флюс в количестве 3400 кг и содержащий 32% MgO, 52% СаО и 12% Fe2О3 присадили в конвертер за 3 мин до подачи азота. В обоих способах по истечении 3,5 мин продувки металла азотом подачу его прекращали, поднимали фурму на первоначальный уровень и производили слив металла в ковш. Результаты плавок приведены в таблице.

Как видно из приведенной таблицы, использование предложенного способа выплавки стали в конвертере с продувкой металла азотом на конечной стадии плавки позволило при более интенсивной подаче азота - 5,7 м3/мин·т стали, против 2,5 м3/мин·т стали при известном способе, обеспечить увеличение гарнисажного слоя на шлаковой части конвертера на 32 мм. Использование за 3 мин до начала продувки азотом ожелезненного магнезиального флюса в количестве 3400 кг позволило повысить содержание в шлаковом гарнисаже оксидов магния до 12,4%. Исключение присадки флюсов в процессе раздува шлака азотом при предлагаемом способе, а также использование легкоплавкого ожелезненного магнезиального флюса позволило повысить выход годной стали на 0,6%.

Источники информации

1. А.М.Бигеев, В.А.Бигеев. Кн. Металлургия стали, г. Магнитогорск, МТТУ, 2000 г., стр.385.

2. В.А.Кравченко, В.В.Смоктий, В.В.Рябов, А.В.Ярошенко, Г.Н.Волдугин, В.И.Савченко. Освоение процесса комбинированной продувки на НЛМК. Труды первого конгресса сталеплавильщиков, Москва, 1993 г., стр.40.

3. Первушин Г.В. Внедрение обработки металла азотом в конвертере после продувки. Сб. Материалы межзаводской школы по обмену производственным опытом. Выпуск №3, август 2003 г. ООО «Корпорация производителей черных металлов». Москва, стр.75-77.

Таблица
Полученные результаты плавок, проведенных в конвертере по предлагаемому техническому решению и по способу, взятому за прототип.
Параметры продувки металла азотом и полученные результатыВариант осуществления способаИзвестныйПредлагаемый1.Положение фурмы до уровня спокойного состояния ванны, м332.Интенсивность продувки, м3/мин·т стали2,55,73.Продолжительность продувки, мин3,53,54.Присадка флюсов: кг/плавку (кг/т)известь1200 (3, 4)-доломит2500 (7, 0)-ожелезненный магнезиальный флюс-3400 (9, 6)5.Время присадки, минизвестьв продувку-доломитв продувку-ожелезненный магнезиальный флюс-За 3 мин до подачи азота6.Толщина гарнисажа в шлемовой части конвертера, мм14467.Содержание MgO в шлаковом гарнисаже6,312,48.Выход жидкой стали, %87,287,8

Похожие патенты RU2289629C1

название год авторы номер документа
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 2008
  • Демидов Константин Николаевич
  • Филатов Михаил Васильевич
  • Смирнов Денис Евгеньевич
  • Зинченко Сергей Дмитриевич
  • Лятин Андрей Борисович
  • Кузнецов Сергей Исаакович
  • Моисеев Андрей Анатольевич
  • Борисова Татьяна Викторовна
  • Возчиков Андрей Петрович
RU2387717C2
СПОСОБ НАНЕСЕНИЯ ГАРНИСАЖА НА ФУТЕРОВКУ КОНВЕРТЕРА 2005
  • Демидов Константин Николаевич
  • Смирнов Леонид Андреевич
  • Кузнецов Сергей Исаакович
  • Возчиков Андрей Петрович
  • Борисова Татьяна Викторовна
RU2294379C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 2003
  • Демидов К.Н.
  • Ламухин А.М.
  • Горшков С.П.
  • Пляка В.П.
  • Зинченко С.Д.
  • Шагалов А.Б.
  • Филатов М.В.
  • Лятин А.Б.
  • Ерошкин С.Б.
  • Бабенко А.А.
  • Кузнецов С.И.
  • Борисова Т.В.
  • Возчиков А.П.
RU2260626C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 2005
  • Демидов Константин Николаевич
  • Борисова Татьяна Викторовна
  • Смирнов Леонид Андреевич
  • Терентьев Александр Евгеньевич
  • Кузнецов Сергей Исаакович
  • Терентьев Евгений Александрович
  • Возчиков Андрей Петрович
RU2288958C1
СПОСОБ РЕМОНТА ФУТЕРОВКИ КОНВЕРТЕРА 2004
  • Виноградов Виктор Леонидович
  • Демидов Константин Николаевич
  • Ерошкин Сергей Борисович
  • Кузнецов Сергей Исаакович
  • Зинченко Сергей Дмитриевич
  • Шагалов Анатолий Борисович
RU2277590C2
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 2015
  • Журавлев Сергей Геннадьевич
  • Краснов Алексей Владимирович
  • Маслов Денис Евгеньевич
  • Ключников Александр Евгеньевич
  • Папушев Александр Дмитриевич
  • Демидов Константин Николаевич
  • Возчиков Андрей Петрович
  • Борисова Татьяна Викторовна
  • Филатов Александр Николаевич
RU2620217C2
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 2006
  • Демидов Константин Николаевич
  • Смирнов Леонид Андреевич
  • Кузнецов Сергей Исаакович
  • Возчиков Андрей Петрович
  • Борисова Татьяна Викторовна
RU2327743C2
СПОСОБ НАНЕСЕНИЯ ГАРНИСАЖА НА ФУТЕРОВКУ КОНВЕРТЕРА 2008
  • Дьяченко Виктор Федорович
  • Демидов Константин Николаевич
  • Захаров Игорь Михайлович
  • Дворцов Александр Владимирович
  • Возчиков Андрей Петрович
  • Сидоров Евгений Валерьевич
  • Борисова Татьяна Викторовна
  • Воронина Ольга Борисовна
  • Кузнецов Сергей Исаакович
  • Авраменко Виталий Алексеевич
RU2373291C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 2006
  • Тахаутдинов Рафкат Спартакович
  • Дьяченко Виктор Федорович
  • Авраменко Виталий Алексеевич
  • Захаров Игорь Михайлович
  • Снегирев Юрий Борисович
RU2317338C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 2004
  • Бодяев Ю.А.
  • Корнеев В.М.
  • Дьяченко В.Ф.
  • Демидов К.Н.
  • Бабенко А.А.
  • Овсянников В.Г.
  • Николаев О.А.
  • Сарычев Б.А.
  • Кузнецов С.И.
  • Борисова Т.В.
  • Возчиков А.П.
RU2254378C1

Реферат патента 2006 года СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ

Изобретение относится к области металлургии, в частности к выплавке стали в конвертере с верхним кислородным дутьем. Способ выплавки стали в конвертере предусматривает после окончания продувки металла кислородом подачу в конвертер через верхнюю кислородную фурму азота с интенсивностью 2,6-6,0 м3/мин на тонну расплава за 1-5 минут перед продувкой азотом ожелезненных магнезиальных флюсов, содержащих 15-95% оксидов магния и 2-15% оксидов железа, в количестве 2-15 кг/т расплава. Техническим результатом использования предлагаемого способа является увеличение толщины гарнисажного слоя верхней части футеровки конвертера, повышение стойкости футеровки, увеличение выхода годной стали. 1 табл.

Формула изобретения RU 2 289 629 C1

Способ выплавки стали в конвертере, включающий завалку лома, заливку чугуна, продувку расплава кислородом, присадку флюсующих материалов, подачу в расплав азота через верхнюю кислородную фурму, отличающийся тем, что продувку металла азотом производят с интенсивностью 2,6-6,0 м3/мин на тонну расплава, при этом за 1-5 мин перед продувкой расплава азотом в конвертер подают ожелезненный магнезиальный флюс, содержащий 15-95% оксидов магния и 2-15% оксидов железа, в количестве 2-15 кг/т расплава.

Документы, цитированные в отчете о поиске Патент 2006 года RU2289629C1

ПЕРВУШИН Г.В
Внедрение обработки азотом в конвертере после продувки
Материалы межзаводской школы по обмену производственным опытом
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
- М.: Корпорация производителей черных металлов, 2003, с.75-77
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 2000
  • Чумаков С.М.
  • Демидов К.Н.
  • Клочай В.В.
  • Смирнов Л.А.
  • Луканин Ю.В.
  • Пляка В.П.
  • Зинченко С.Д.
  • Орлов Е.П.
  • Филатов М.В.
  • Кузнецов С.И.
  • Мильбергер Т.Г.
  • Школьник Я.Ш.
  • Кобелев В.А.
  • Потанин В.Н.
  • Возчиков А.П.
RU2164952C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ УРОВНЯ РАСПЛАВЛЕННОГО МЕТАЛЛА В ЭЛЕКТРОМАГНИТНОМ ПРОЦЕССЕ НЕПРЕРЫВНОЙ РАЗЛИВКИ И СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ РАСПЛАВЛЕННОГО МЕТАЛЛА 2000
  • Ким Гоо-Хва
  • Ох Ки-Дзанг
  • Ким Хо-Янг
  • Сим Донг-Дзун
RU2194952C1
МАГНЕЗИАЛЬНЫЙ ФЛЮС ДЛЯ СТАЛЕПЛАВИЛЬНОГО ПРОИЗВОДСТВА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2001
  • Шатохин И.М.
RU2205232C1
Способ передела низкомарганцовистого чугуна в конвертере 1981
  • Липухин Юрий Викторович
  • Жаворонков Юрий Иванович
  • Зельцер Александр Григорьевич
  • Махницкий Виктор Александрович
  • Зубарев Алексей Григорьевич
  • Колганов Геннадий Сергеевич
  • Костяной Борис Михайлович
  • Руднев Юрий Андреевич
  • Югов Петр Иванович
  • Сергеев Александр Георгиевич
  • Соколов Геннадий Анисимович
SU985055A1
US 3726665 А, 10.04.1973
GB 20027058 A, 13.02.1980
Способ получения молочной кислоты 1922
  • Шапошников В.Н.
SU60A1

RU 2 289 629 C1

Авторы

Шагалов Анатолий Борисович

Демидов Константин Николаевич

Зинченко Сергей Дмитриевич

Филатов Михаил Васильевич

Ерошкин Сергей Борисович

Лятин Андрей Борисович

Кузнецов Сергей Исаакович

Смирнов Денис Евгеньевич

Даты

2006-12-20Публикация

2005-04-20Подача