СПОСОБ ЭКОЛОГИЧЕСКИ ЧИСТОЙ ПРЕДПУСКОВОЙ ХИМИЧЕСКОЙ ОЧИСТКИ И ПАССИВАЦИИ ПОВЕРХНОСТЕЙ ТЕПЛОЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ Российский патент 2006 года по МПК F28G9/00 B08B3/08 C23G5/36 

Описание патента на изобретение RU2290586C1

Изобретение относится к теплоэнергетике и может быть использовано для предпусковой очистки от внутренних отложений поверхностей нагрева котлов-утилизаторов (КУ) парогазовых установок и очистки других котлов.

Известен способ проведения предпусковой химической очистки путем обеспечения циркуляции раствора кислот по замкнутым контурам, включающим подогревательные, испарительные и пароперегревательные поверхности котла [1]. Такой способ многостадиен, дорогостоящ и опасен в экологическом отношении из-за вредных для окружающей среды сбросов. Его проведение требует емкостей и насосов для приготовления и хранения концентрированных растворов реагентов, насосов химической очистки для подачи в контуры и циркуляции в них растворов реагентов, оборудования для сбора и нейтрализации промывочных растворов, а также монтажа кислотной схемы очистки.

Наиболее близким к предлагаемому техническому решению является способ предпусковой химической очистки и пассивации поверхностей теплоэнергетического оборудования, включающий промывку технической водой очищаемых поверхностей по разомкнутой схеме, создание по меньшей мере одного замкнутого контура, содержащего по меньшей мере часть очищаемой поверхности, и обеспечение циркуляции по указанному контуру нагретого раствора химического реагента [2]. Такому способу присущи те же недостатки, о которых говорилось выше.

Достигаемым результатом изобретения является упрощение и удешевление способа, а также предотвращение вредных для окружающей среды сбросов.

Указанный результат обеспечивается тем, что в способе предпусковой химической очистки и пассивации поверхностей теплоэнергетического оборудования, включающем промывку технической водой очищаемых поверхностей по разомкнутой схеме, создание по меньшей мере одного замкнутого контура, содержащего по меньшей мере часть очищаемой поверхности, и обеспечение циркуляции по указанному контуру нагретого раствора химического реагента, согласно изобретению раствор реагента готовят непосредственно в каждом контуре путем заполнения его обессоленной или умягченной водой с последующим вводом реагента, в качестве которого используют водный раствор смеси летучих и пленкообразующих аминов с диспергатором, нагрев раствора ведут до 70÷350°С, ввод реагента производят с расходом 5÷25 г/м2 до насыщения им поверхности контуров, контролируемого появлением концентрации реагента в растворе в пределах 25 мг/л, при достижении содержания соединений железа в циркулирующем растворе 10 мг/л начинают продувку контуров с соответствующим вводом в них подпиточной воды и реагента, процесс ведут не менее 24 часов до снижения концентрации соединений железа в циркулирующем растворе реагента не менее чем на 1 мг/л.

Смесь летучих и пленкообразующих аминов (Хеламин) имеет общую формулу R[NH(СН2)3]XNH2, где R=C12-C20; X=1-7. Температура замерзания (-1°С), температура горения >200°С, обладает специфическим аминовым запахом, его плотность составляет 0,99 г/см3, его водный раствор щелочной - рН 11,5±1. Смесь содержит диспергатор - поликарбоксилат или полиакрилат.

Обладая поверхностно-активными свойствами, амины адсорбируются металлической поверхностью, постепенно механически разрушаются рыхлые отложения и переходят в шлам.

Диспергатор частично растворяет и удерживает соединения железа и соли жесткости в растворе в мелкодисперсном состоянии. Допустимая загрязненность после монтажной очистки поверхностей нагрева составляет 200÷300 г/м2. Для очистки такой поверхности необходим расход применяемого химического реагента 5÷25 г/м2 и проведение процесса очистки не менее 24 часов до снижения концентрации соединений железа в циркулирующем растворе реагента не менее чем на 1 мг/л. Большая длительность процесса очистки нецелесообразна из-за незначительности достигаемого эффекта. Расход реагента менее 5 г/м2 не позволяет эффективно разрыхлять и удалять отложения с поверхности, не образуется равномерная защитная пассивирующая пленка. Максимальный расход (25 г/м2) реагента связан с допустимой после монтажной загрязненностью поверхности. Превышение этого расхода нецелесообразно по экономическим и экологическим причинам. Применение обессиленной и умягченной воды обеспечивает уменьшение расхода реагента на связывание солей жесткости в технической воде и усиление пассивирующего эффекта. Сначала при поступлении химического реагента в обессоленную или умягченную воду идет процесс насыщения им очищаемых поверхностей контуров. Химический реагент вводят до насыщения им поверхности контуров, контролируемого появлением концентрации реагента в растворе в пределах 25 мг/л. Превышение указанной концентрации может привести к вспениванию воды в котлах за счет высокой щелочности реагента и возможности появления гидроударов в трубопроводах. Кроме того, сбросные воды при превышении указанной концентрации реагента требуют дополнительной очистки. Применяемый химический реагент при концентрации его в воде свыше 2 мг/л удерживает в растворенном состоянии соединения железа до концентрации 10÷20 мг/л, предотвращая их осаждение. С этим фактов связано начало продувки контуров, которая начинается при достижении содержания соединений железа в циркулирующем растворе свыше 10 мг/л. Выбор интервала температур нагрева раствора 70÷350°С объясняется следующим. Процесс очистки с применением предлагаемого химического реагента активно начинается при температуре раствора более 70°С, при этом рост концентрации соединений железа превышал 5 мг/л в час в продувочной воде контуров. При более низкой температуре рост концентрации соединений железа происходит неоправданно медленно. Ограничение температуры по верхнему пределу связано с характером образования пассивирующей пленки, заметная гидрофобность которой не обнаруживается при температуре более 350°С, что во многом определяет устойчивость защитной пленки при длительной консервации оборудования.

Сущность предлагаемого способа иллюстрируется следующим примером.

На энергоблоках парогазовых установок ПГУ одной из ТЭС в условиях одновременного ввода их в работу и отсутствия источников стороннего пара была проведена предпусковая послемонтажная очистка и пассивация КУ и паропроводов по предлагаемому способу. Предварительные вырезки из очищаемых поверхностей показали их загрязненность в пределах 100÷150 г/м2.

Сначала проводилась отмывка технической водой всех поверхностей нагрева КУ и трубопроводов, затем по замкнутым контурам очистка и пассивация с использованием в качестве химического реагента хеламина марки BRW-150H, содержащего диспергатор - поликарбоксилат.

Водную отмывку технической водой КУ и трубопроводов проводили по разомкнутой схеме со скоростью 1,2 м/с для предварительного удаления грубых и слабо сцепленных с внутренней поверхностью труб загрязнений (песок, земля, грат, изоляционный материал и т.п.). Длительность отмывки каждой поверхности нагрева составила 25 мин, а общие затраты технической воды на отмывку не превысили 2000 т. После отмывки осуществлялся сброс отмывочной воды и заполнение контуров обессоленной водой. Для снижения затрат хеламина и обессоленной воды очистка производилась по четырем замкнутым контурам, в сумме содержащим все поверхности нагрева. Первый контур включал газовый подогреватель конденсата, в котором циркуляция производилась рециркуляционными насосами. Площадь очищаемой поверхности (ПОП) составила 5041 м2. Второй контур включал испаритель низкого давления и пароперегреватель низкого давления, в котором циркуляция производилась циркуляционными насосами низкого давления через барабан низкого давления (БНД) (ПОП - 5110 м2). Третий контур включал испаритель высокого давления, в котором циркуляция производилась циркуляционными насосами высокого давления через барабан высокого давления (БВД) (ПОП - 5018 м2). Четвертый контур включал экономайзер (ЭК) высокого давления и пароперегреватель высокого давления (ППВД), в котором циркуляция производилась питательными насосами через ЭК-БВД-ППВД-БНД (ПОП - 5642 м2). Насосами-дозаторами в контуры вводился хеламин из расчета 25 г/м2 в первый контур наиболее загрязненный, 5 г/м2 - в остальные и одновременно производился разогрев всех контуров КУ с помощью включения газовой турбиной установки (ГТУ) и выходом ее на частоту вращения холостого хода с разогревом воды и отводом образовавшегося пара через выпар деаэрационных колонок и дренажи пароперегревателей высокого и низкого давления. Разогрев происходил при нескольких включениях ГТУ. При первом включении ГТУ на 10 мин происходил разогрев воды в контурах КУ до различных температур: в газовом подогревателе конденсата до 70°С (при повторных включениях она повышалась до 130°С), в испарителях и пароперегревателях до 200°С (при повторных включениях она повышалась до 350°С). Контролировались концентрация хеламина в растворе (чтобы она не превышала 25 мг/л) и содержание соединений железа. При достижении концентрации соединений железа в растворе 10 мг/л начинали продувку контуров с соответствующим вводом в них подпиточной воды и хеламина. Очистка и пассивация поверхностей шли одновременно по всем поверхностям нагрева, объединенным общей схемой подпитки. Очистку и пассивацию вели 45 час до начала снижения на 1 мг/л концентрации соединений железа в циркулирующем растворе реагента.

Всего было проведено 16 сбросов продувочной воды с общим количеством сброса 50 т. Общие затраты обессоленной воды составили 120 т, хеламина - 110 л.

После окончания химической очистки и пассивации очищаемых поверхностей была проведена вырезка из них образцов, которые потом исследовались. Их исследование показало, что образцы имеют высокие защитные свойства оксидной пленки с гидрофобной структурой при максимальном количестве отложений менее 70 г/м2.

Таким образом, предлагаемый способ при простоте, экологической безопасности и значительном удешевлении позволяет надежно очищать и пассивировать поверхности теплотехнического оборудования.

Источники информации

1. Химическая очистка теплоэнергетического оборудования. Под редакцией Т.Х.Маргулова, М, Энергия, 1969, с.8, 10, 132-135.

2. Методические указания по предпусковой химической очистке теплоэнергетического оборудования МУ-34-70-113-85, М., Союзтехэнерго, 1986, с.4, 14, 21.

Похожие патенты RU2290586C1

название год авторы номер документа
Способ химической очистки теплоэнергетического оборудования 1980
  • Сакулин Сергей Юрьевич
  • Беляев Михаил Борисович
  • Крутиков Павел Георгиевич
  • Шуйский Дориан Борисович
  • Балукова Валентина Дмитриевна
SU911120A1
СПОСОБ ПРЕДПУСКОВОЙ ФИЗИКО-МЕХАНИЧЕСКО-ПАРОВОЙ ОЧИСТКИ И ПАССИВАЦИИ ВНУТРЕННЕЙ ПОВЕРХНОСТИ КОТЕЛЬНЫХ ТРУБ ОТ ОТЛОЖЕНИЙ 2012
  • Полевич Александр Николаевич
  • Кирилина Анастасия Васильевна
  • Суслов Сергей Юрьевич
  • Зезюля Тамара Викторовна
RU2599772C2
СПОСОБ ЭКСПЛУАТАЦИОННОЙ ОЧИСТКИ И ПАССИВАЦИИ ВНУТРЕННЕЙ ПОВЕРХНОСТИ КОТЕЛЬНЫХ ТРУБ ЭНЕРГЕТИЧЕСКОГО БАРАБАННОГО КОТЛА И СПОСОБ ЭКСПЛУТАЦИОННОЙ ОЧИСТКИ И ПАССИВАЦИИ ВНУТРЕННЕЙ ПОВЕРХНОСТИ КОТЕЛЬНЫХ ТРУБ ЭНЕРГЕТИЧЕСКОГО КОТЛА-УТИЛИЗАТОРА ПАРОГАЗОВОЙ УСТАНОВКИ (ВАРИАНТЫ) 2013
  • Кирилина Анастасия Васильевна
  • Суслов Сергей Юрьевич
  • Зезюля Тамара Викторовна
  • Суслов Игорь Сергеевич
  • Сергеев Игорь Александрович
  • Соколова Екатерина Александровна
RU2525033C1
СПОСОБ ЗАЩИТЫ И ПРЕДУПРЕЖДЕНИЯ ОТ ОБРАЗОВАНИЯ НАКИПИ И КОРРОЗИИ ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ ПАРОВОДЯНЫХ ТРАКТОВ ТЕПЛОЭНЕРГЕТИЧЕСКИХ УСТАНОВОК 2015
  • Хаустов Михаил Юрьевич
RU2637036C2
СПОСОБ ОЧИСТКИ ВНУТРЕННИХ ПОВЕРХНОСТЕЙ КОТЕЛЬНОГО ОБОРУДОВАНИЯ ОТ ОТЛОЖЕНИЙ 2019
  • Коваленко Игорь Александрович
  • Винник Дмитрий Владимирович
RU2724063C1
Установка для водоподготовки 1989
  • Лепилин Рудольф Сергеевич
  • Субботина Наталья Петровна
  • Солодянников Владимир Васильевич
  • Маврицкая Раиса Константиновна
SU1765121A1
СПОСОБ ОЧИСТКИ ПАРОВЫХ КОТЛОВ 1999
  • Янковский Николай Андреевич
  • Туголуков Александр Владимирович
  • Степанов Валерий Андреевич
  • Кравченко Борис Васильевич
  • Островская Алина Ивановна
  • Заугольникова Евгения Анатольевна
  • Лозовая Валентина Ивановна
  • Литовченко Нина Ильинична
  • Шерстюков Дмитрий Николаевич
  • Супрун Галина Григорьевна
  • Фоменко Сергей Дмитриевич
  • Базулук Константин Борисович
  • Бурсаков Виктор Иванович
  • Пяткин Станислав Федорович
RU2150645C1
Способ очистки водогрейного котла 1990
  • Верховский Дмитрий Дмитриевич
  • Осминин Владимир Сергеевич
  • Ефремов Анатолий Иванович
  • Хорошилов Леонид Иванович
  • Забойкин Игорь Александрович
SU1770723A1
Способ очистки и пассивации внутренних поверхностей трубок конденсаторов паровых турбин от отложений 2021
  • Овечкина Ольга Владимировна
  • Журавлев Лев Семенович
  • Акулич Раиса Васильевна
RU2767674C1
СПОСОБ ОЧИСТКИ И ЗАЩИТЫ ОТ НАКИПИ И КОРРОЗИИ ТЕПЛОЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ 2005
  • Грунтовой Виктор Федотович
  • Демешко Виктор Дмитриевич
RU2285218C1

Реферат патента 2006 года СПОСОБ ЭКОЛОГИЧЕСКИ ЧИСТОЙ ПРЕДПУСКОВОЙ ХИМИЧЕСКОЙ ОЧИСТКИ И ПАССИВАЦИИ ПОВЕРХНОСТЕЙ ТЕПЛОЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ

Способ касается предпусковой химической очистки и пассивации поверхностей теплоэнергетического оборудования, относится к теплоэнергетике и может быть использован для предпусковой очистки от внутренних отложений поверхностей нагрева котлов-утилизаторов парогазовых установок и очистки других котлов. Способ включает промывку технической водой очищаемых поверхностей по разомкнутой схеме, создание по меньшей мере одного замкнутого контура, содержащего по меньшей мере часть очищаемой поверхности, и обеспечение циркуляции по указанному контуру нагретого раствора химического реагента. Раствор реагента готовят непосредственно в каждом контуре путем заполнения его обессоленной или умягченной водой с последующим вводом реагента. В качестве реагента используют водный раствор смеси летучих и пленкообразующих аминов в смеси с диспергатором. Нагрев раствора ведут до 70÷350°С. Ввод реагента производят с расходом 5÷25 г/м2 до насыщения им поверхности контуров, контролируемого появлением концентрации реагента в растворе в пределах 25 мг/л. При достижении содержания соединений железа в циркулирующем растворе 10 мг/л начинают продувку контуров с соответствующим вводом в них подпиточной воды и реагента. Процесс ведут не менее 24 часов до снижения концентрации соединений железа в циркулирующем растворе реагента не менее чем на 1 мг/л. Техническим результатом является упрощение и удешевление способа, а также предотвращение вредных для окружающей среды сбросов.

Формула изобретения RU 2 290 586 C1

Способ предпусковой химической очистки и пассивации поверхностей теплоэнергетического оборудования, включающий промывку технической водой очищаемых поверхностей по разомкнутой схеме, создание по меньшей мере одного замкнутого контура, содержащего по меньшей мере часть очищаемой поверхности, и обеспечение циркуляции по указанному контуру нагретого раствора химического реагента, отличающийся, тем, что раствор реагента готовят непосредственно в каждом контуре путем заполнения его обессоленной или умягченной водой с последующим вводом реагента, в качестве которого используют водный раствор смеси летучих и пленкообразующих аминов с диспергатором, нагрев раствора ведут до 70÷350°С, ввод реагента производят с расходом 5÷25 г/м до насыщения им поверхности контуров, контролируемого появлением концентрации реагента в растворе в пределах 25 мг/л, при достижении содержания соединений железа в циркулирующем растворе 10 мг/л начинают продувку контуров с соответствующим вводом в них подпиточной воды и реагента, процесс ведут не менее 24 ч до снижения концентрации соединений железа в циркулирующем растворе реагента не менее чем на 1 мг/л.

Документы, цитированные в отчете о поиске Патент 2006 года RU2290586C1

Методические указания по предпусковой химической очистке теплоэнегетического оборудования
Нивелир для отсчетов без перемещения наблюдателя при нивелировании из средины 1921
  • Орлов П.М.
SU34A1
СПО, Союзтехэнерго
- М., 1986, с.4, 14, 21
Способ химической очистки теплоэнергетического оборудования 1980
  • Сакулин Сергей Юрьевич
  • Беляев Михаил Борисович
  • Крутиков Павел Георгиевич
  • Шуйский Дориан Борисович
  • Балукова Валентина Дмитриевна
SU911120A1
СПОСОБ ХИМИЧЕСКОЙ ОЧИСТКИ ОТ ОТЛОЖЕНИЙ ПОВЕРХНОСТЕЙ ТЕПЛОЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ 2000
  • Рыженков В.А.
  • Куршаков А.В.
  • Кулов В.Е.
  • Петрова Т.И.
RU2166718C1
СПОСОБ ЗАЩИТЫ ОТ КОРРОЗИИ УСТАНОВОК 1998
  • Кукушкин А.Н.
  • Михайлов В.А.
  • Величко Е.В.
  • Балаян Р.С.
  • Григорьева Т.В.
RU2146307C1
WO 9306260 A, 01.04.1993
US 4860821 A, 29.08.1989
Разборный снегоход 2016
  • Яриз Алексей Николаевич
RU2641370C1

RU 2 290 586 C1

Авторы

Богачев Александр Федорович

Гомболевский Владимир Иванович

Федосеев Борис Сергеевич

Радин Юрий Анатольевич

Копсов Анатолий Яковлевич

Даты

2006-12-27Публикация

2005-06-27Подача