Изобретение относится к области микробиологии и представляет собой новый бактериальный штамм, который может быть использован для очистки почвы, грунтовых и поверхностных вод при попадании в окружающую среду тринитротолуола.
2,4,6-Тринитротолуол (ТНТ) производится нитрованием толуола в промышленных масштабах с конца 19 века во многих странах. Он используется в качестве взрывчатого вещества в военных и промышленных целях. ТНТ был обнаружен в сточных водах, поверхностных и почвенных водах, в почве и осадках вблизи предприятий, его производящих. Загрязнение окружающей среды ТНТ представляет серьезную угрозу здоровью населения и природе. ТНТ мало растворим в воде, хорошо адсорбируется на минералах глины и гуминовых веществах почвы и очень медленно переходит в водную фазу, где его метаболизируют микроорганизмы.
Известны штаммы микроорганизмов: Penicillium sp, [1], Phanerochaete chrysosporium [2], Pseudomonas fluorescens I-C [3], Clostridium thermoaceticum [4], Pseudomonas savastanoi [5], Rhodococcus (opacus) erythropolis HL PM-1 [6], Desulfovibrio sp. (B strain) [7], Enterobacter cloacae PB2 [8], Anabena sp. [9], Pseudomonas putida [10], которые могут разлагать ТНТ в почве и воде. Наиболее близким предлагаемому штамму является штамм бактерий Pseudomonas putida [10], обладающий высокими характеристиками по биодеградации ТНТ. Однако недостатком этого штамма является то, что для усиления биодеградации ТНТ необходимо добавлять поверхностно-активные вещества.
Задачей изобретения является получение нового штамма микроорганизмов, обладающего высокой утилизирующей способностью по отношению к ТНТ, продуцирующего внеклеточные биологические поверхностно-активные вещества (биосурфактанты), который может быть использован для очистки почв и водоемов, загрязненных ТНТ и солями тяжелых металлов.
Предлагаемый штамм Pseudomonas putida BS320 выделен из почвы, загрязненной ТНТ (г.Чапаевск Самарской обл.), и селекционирован путем пересевов отдельных колоний бактерий на чашках с минимальным агаром А, который содержит, г/дм3: Na2HPO4·Н2О - 6,0; КН2PO4 - 3,0; NaCl - 0,5; NH4Cl - 1,0; Mg2SO4·7H2O - 0,3; CaCl2·2H2O - 0,01; агар-агар - 15,0; глюкоза - 5 г, THT - 50 мг. Вода дистиллированная - до 1 дм3; рН - 7,2.
Штамм Pseudomonas putida BS320 идентифицирован в соответствии с определителем Берга [12] и депонирован во Всероссийской коллекции промышленных микроорганизмов (ВКПМ) под номером ВКПМ В-8811.
Полученный штамм характеризуется следующими признаками.
Культурально-морфологические признаки. Грамотрицательные подвижные палочки размером 2-3·0,6-1,0 мкм, спор не образует. На агаризованной питательной среде из кислотного гидролизата рыбной муки на вторые сутки образуются плоские матовые колонии диаметром 2-3 мм. В бульоне из кислотного гидролизата рыбной муки растет в виде пленки и равномерного помутнения. Штамм является аэробом, обладает оксидазной и каталазной активностью, растет в температурном диапазоне от 12 до 37°С, оптимум от 26 до 28°С. В качестве источника углерода потребляет глюкозу, L-валин, β-аланин, 2-кетоглюконат, L-арнинин. Трегалозу, мезо-инозит, гераниол не потребляет. Использует нитраты в качестве источника азота. Обладает аргининдигидролазной активностью. Денитрификацию не осуществляет. Крахмал, желатин не гидролизует. Лецитиназной активностью не обладает. Прототроф, в дополнительных факторах роста не нуждается.
Штамм трансформирует ТНТ кометаболически в присутствии глюкозы.
Штамм не патогенен (не вирулентен, не токсичен, токсигенностью не обладает).
Проверка на патогенность проведена на белых мышах и белых крысах. На штамм оформлено заключение о безопасности.
Генетические особенности. Культура устойчива к антибиотикам: полимиксину, стрептомицину. Штамм устойчив к ионам тяжелых металлов: Pb, Zn, Mn, Fe, Cr - 50 мг/дм3, Hg - 6 мг/дм3.
Штамм продуцирует биологические поверхностно-активные вещества (биосурфактанты). Штамм хорошо растет на богатых питательных средах на основе мясопептонного бульона и ферментативного гидролизата рыбной муки, на синтетических питательных средах, где в качестве источника углерода используются глюкоза, сахароза, пируват, меласса.
Условия хранения: в лиофилизированном состоянии в ампулах при 4°С. Штамм может поддерживаться регулярными пересевами (1 раз в 2 недели) на агаризованной питательной среде, г/дм3: Na2HPO4·Н2O - 6,0; КН2PO4 - 3,0; NaCl - 0,5; Mg2SO4·7Н2О - 0,3; CaCl2·2H2O - 0,01; (NH4)2SO4 - 0,25; агар-агар -15,0; глюкоза - 5 г; ТНТ - 50 мг; вода дистиллированная - до 1 дм3; рН - 7,2.
Изобретение поясняется следующими примерами.
Пример 1. Штамм бактерий Pseudomonas putida BS320 выращивают на минеральной среде следующего состава, г/л: Na2HPO4·Н2О - 6,0; КН2PO4 - 3,0; NaCl - 0,5; Mg2SO4·7H2O - 0,3; CaCl2·2H2O - 0,01; (NH4)2SO4 - 0,25; агар-агар - 15,0; глюкоза (или меласса) - 5; вода дистиллированная - до 1 дм3; рН - 7,2. В колбочки на 100 мл вносят по 30 мл питательной среды и 0,1% ксенобиотика (ТНТ) отдельно в каждую. Колбы засевают клетками предлагаемого штамма в концентрации 1,0·107 м.кл./см3. В качестве контроля ставят такую же колбу со средой, ТНТ и без бактерий для определения общих (естественных) потерь. Опыт проводят в пяти повторностях. Колбы культивируют на качалке при 200 об./мин в течение 2,5 суток. Кометаболическую биодеградацию ТНТ определяют с использованием жидкостной хроматографии высокого давления. Данные эксперимента показывают, что предлагаемый штамм через 48 часов утилизирует 88% ТНТ, тогда как на среде без глюкозы или мелассы в качестве источника углерода биодеградации ТНТ не установлено.
Пример 2. В колбы на 100 см3 вносят по 30 см3 синтетической среды (состав среды указан в примере 1), ТНТ из расчета 100 мг/л, 20 мг/л солей Pb, Zn, Mn, Cr, Fe и Hg - 6 мг/дм3 и клетки штамма Pseudomonas putida BS320 в концентрации 1,0·107 м.кл./см3. Контролем служит засеянная колба с ТНТ. Исследуемые колбы культивируют в пяти повторностях на качалке при 28°С и 200 об/мин в течение 2 суток. Результаты эксперимента показывают, что эффективность деградации ТНТ предлагаемым штаммом в вариантах с солями металлов и без них не отличается (таблица 1).
Пример 3. Культуральную жидкость штамма Pseudomonas putida BS, выращенного как в примере 1, отделяют от микробных клеток центрифугированием при 5000 об/мин в течение 10 минут. В качестве биосурфактантсодержащей жидкости в опыте используют культуральную жидкость, разведенную дистиллированной водой в 10 раз. Поверхностное натяжение этой жидкости определяют с использованием кольцевого тензиометра. Контролем служит дистиллированная вода. Результаты определения поверхностного натяжения показывают (таблица 2), что добавление культуральной среды в дистилированную воду приводит к снижению поверхностного натяжения дистиллированной воды с 53,1 до 26,4 дин/см. Добавление незасеянной питательной среды в таком же соотношении 1:10 не оказывает влияния на поверхностное натяжение дистиллированной воды. Таким образом, культуральная жидкость предлагаемого штамма содержит биологические поверхностно-активные вещества.
Пример 4. В колбы на 100 см3 вносят по 27 см3 минеральной среды (состав среды указан в примере 1) и ТНТ из расчета 100 мг/л. В колбы добавляют по 3 см3 биосурфактантсодержащей культуральной среды, как в примере 3. Колбы засевают культурой Pseudomonas putida BS320 до концентрации 1,0·107 КОЕ/см3. В качестве контролей используют колбы с ТНТ. Культивирование проводят на качалке при 200 об/мин, температуре 20°С в течение 3 суток. Эффективность биодеградации ТНТ определяют методом жидкостной хроматографии высокого давления. Результаты экспериментов показывают (таблица 3), что добавление биосурфактанта повышает эффективность биодеградации ТНТ. Так, за 2 суток в вариантах опыта с добавлением биосурфактанта биодеградация ТНТ прошла на 100%.
Пример 5. В эксикаторы объемом 3 дм3 вносят 2 кг дерново-подзолистой почвы, загрязненной 0,1% по массе ТНТ, и тщательно перемешивают.
Суспензию бактерий штамма Pseudomonas putida BS320 разводят фосфатным буферным раствором рН 7,2 и вносят в почву, загрязненную ксенобиотиком из расчета 1,0·107 КОЕ на 1 г почвы. Почву тщательно перемешивают, увлажняют до 60% от общей влагоемкости и экспонируют при 20°С в течение 2 месяцев. Для анализа образцы почвы отбирают в момент начала эксперимента и через 2 месяца. Эффективность биодеградации ТНТ предлагаемым штаммом в почве оценивают методом жидкостной хроматографии высокого давления. Результаты исследований показывают, что предлагаемый штамм в течение 2 месяцев при температуре 20°С осуществляет деградацию 65,6% ТНТ.
Пример 6. В эксикаторы объемом 3 дм3 с 2 кг почвы, загрязненной ТНТ (100 мг/кг) вносят 20 мг/кг солей Pb, Zn, Mn, Cr, Fe и Hg-6 мг/кг и клетки штамма Pseudomonas putida BS320 до концентрации 1,0·107 КОЕ/г почвы. Почву тщательно перемешивают, увлажняют до 60% от общей влагоемкости и экспонируют при 20°С в течение 2 месяцев. Для анализа образцы почвы отбирают в начале эксперимента и через 2 месяца. Эффективность биодеградации нефти предлагаемым штаммом Pseudomonas putida BS320 в почве оценивают методом жидкостной хроматографии высокого давления. Контролем служит почва, загрязненная ТНТ и внесенными микроорганизмами. Повторность опыта пятикратная. Результаты эксперимента показывают, что эффективность деградации ТНТ предлагаемым штаммом в вариантах с солями металлов и без них не отличается (таблица 5).
Таким образом, преимуществом предлагаемого штамма является то, что он при температуре 20°С утилизирует ТНТ в почве и воде. Предлагаемый штамм продуцирует биологические поверхностно-активные вещества, что ускоряет деградацию ТНТ в водной среде и почве. Устойчивость штамма к ионам тяжелых металлов расширяет диапазон его применения при очистке почвы и воды от комбинированного загрязнения ТНТ и металлами.
ЛИТЕРАТУРА
1. Патент России №2001111823, 2003.05.10. Микробиологический способ удаления нитроароматического соединения, присутствующего в растворе или почве.
2. Jalal Hawari, Annamaria Halasz, Sylvie Beaudet, Louise Paquet, Guy Ampleman, and Sonia Thiboutot. Biotransformation of 2,4,6-Trmitrotoluene with Phanerochaete chrysosporium in Agitated Cultures at pH 4.5. Applied and Environmental Microbiology, 1999, Vol.65, No.7, p.2977-2986.
3. Jeong W. Pak, Kyle L. Knoke, Daniel R. Noguera, Brian G. Fox, and Glenn H. Chambliss. Transformation of 2,4,6-Trinitrotoluene by Purified Xenobiotic Reductase В from Pseudomonas fluorescens I-C. Applied and Environmental Microbiology, 2000, 66 (11):4742-4750.
4. Huang S, Lindahl PA, Wang C, Bennett GN, Rudolph FB, Hughes JB. 2,4,6-trinitrotoluene reduction by carbon monoxide dehydrogenaseyrow Clostridium thermoaceticum. Applied and Environmental Microbiology, 2000, 66 (4):1474-1478.
5. Martin JL, Comfort SD, Shea PJ, Kokjohn ТА, Drijber RA. Denitration of 2,4,6-trinitrotoluene by Pseudomonas savastanoi. Can J Microbiol., 1997, 43 (5):447-55.
6. Heiss, G., Hofinann, K.W., Trachtmann, N., Walters, D.M., Rouviere, P., Knackmuss, H. - J. (2002). Npd gene functions of Rhodococcus (opacus) erythropolis HL PM-1 in the initial steps of 2,4,6-trinitrophenol degradation. Microbiology, 148:799-806.
7. Boopathy R., Kulpa C., Wilson M. Metabolism of 2,4,6-trinitrotoluene by Desulfovibrio sp. (B strain). Appl. Microbiol. Biotechnol. 1993, v.393, pp.270-275.
8. French C.E., Nicklin S., Bruce N.C. Aerobic Degradation of 2,4,6-Trinitrotoluene by En-terobacter cloacae PB2 and by Pentaerythritol Tetranitrate Reductase. Applied and Environmental Microbiology, 1998, 64 (8):2864-22868.
9. Pavlostathis S.G., Jackson G.H. Biotransformation of 2,4,6-trinitrotoluene in Anabena sp. Cultures. Environmental Toxicology and Chemistry, 1999, 18 (3):412-419.
10. Chul Hwan Park, Tak-Hyun Kirn, Sangyong Kim, Seung-Wook Kim, Jinwon Lee, and Sun-Hwan Kim. Optimization for Biodegradation of 2,4,6-Trinitrotoluene (TNT) by Pseudomonas putida, Journal of Bioscience and Bioengineering, 2003.
11. Bergey′s Manual of Determinative Bacteriology. Ninth Edition. Baltimore, Maryland: Wil-liams & Wilkins, 1994. - 787 р.
название | год | авторы | номер документа |
---|---|---|---|
ШТАММ БАКТЕРИЙ Pseudomonas alcaligenes, ИСПОЛЬЗУЕМЫЙ ДЛЯ ОЧИСТКИ ПОЧВ, ГРУНТОВЫХ И ПОВЕРХНОСТНЫХ ВОД ОТ ТРИНИТРОТОЛУОЛА | 2004 |
|
RU2292392C2 |
ШТАММ БАКТЕРИЙ PSEUDOMONAS STUTZERI MEV-S1, ИСПОЛЬЗУЕМЫЙ ДЛЯ ОЧИСТКИ ПОЧВ, ГРУНТОВЫХ И ПОВЕРХНОСТНЫХ ВОД ОТ НЕФТИ И ПРОДУКТОВ ЕЕ ПЕРЕРАБОТКИ | 2002 |
|
RU2228952C2 |
ШТАММ БАКТЕРИЙ PSEUDOMONAS ALCALIGENES MEV, ИСПОЛЬЗУЕМЫЙ ДЛЯ ОЧИСТКИ ПОЧВ, ГРУНТОВЫХ И ПОВЕРХНОСТНЫХ ВОД ОТ НЕФТИ И ПРОДУКТОВ ЕЕ ПЕРЕРАБОТКИ | 2002 |
|
RU2228953C2 |
ШТАММ ДРОЖЖЕЙ Yarrowia lipolytica ВКПМ Y-3492-ДЕСТРУКТОР ТРИНИТРОТОЛУОЛА | 2010 |
|
RU2467064C2 |
ШТАММ ДРОЖЖЕЙ GEOTRICHUM SP., ОСУЩЕСТВЛЯЮЩИЙ БИОЛОГИЧЕСКУЮ ДЕГРАДАЦИЮ 2,4,6-ТРИНИТРОТОЛУОЛА | 2010 |
|
RU2451066C2 |
СПОСОБ БИОЛОГИЧЕСКОЙ ОЧИСТКИ ВОДЫ ОТ ТРИНИТРОТОЛУОЛА | 2010 |
|
RU2453508C2 |
ШТАММ БАКТЕРИЙ Pseudomonas denitrificans, ОБЛАДАЮЩИЙ СВОЙСТВОМ УТИЛИЗИРОВАТЬ ФЕНАНТРЕН | 2015 |
|
RU2575064C1 |
БИОСЕНСОР ДЛЯ ОПРЕДЕЛЕНИЯ 2,4,6-ТРИНИТРОТОЛУОЛА | 2010 |
|
RU2437930C1 |
СПОСОБ БИОРЕМЕДИАЦИИ ВОДЫ, ЗАГРЯЗНЕННОЙ ТРИНИТРОТОЛУОЛОМ | 2010 |
|
RU2482076C2 |
СПОСОБ ОЧИСТКИ ВОДЫ И МЕРЗЛОТНЫХ ПОЧВ ОТ НЕФТИ И НЕФТЕПРОДУКТОВ ШТАММОМ БАКТЕРИЙ Pseudomonas panipatensis ВКПМ В-10593 | 2013 |
|
RU2525932C1 |
Изобретение относится к области микробиологии, в частности для получения биопрепарата для очистки почвы, грунтовых и поверхностных вод при попадании в окружающую среду тринитротолуола. Штамм бактерий Pseudomonas putida BS320 выделен из почвы, депонирован во Всероссийской коллекции промышленных микроорганизмов под номером В-8811. Данный штамм утилизирует тринитротолуол. Устойчивость штамма к ионам тяжелых металлов расширяет диапазон его применения при очистке почвы и воды от комбинированного загрязнения тринитротолуолом и металлами. Штамм Pseudomonas putida BS320 продуцирует биологические поверхностно-активные вещества, что ускоряет деградацию тринитротолуола в водной среде и почве. 5 табл.
Штамм бактерий Pseudomonas putida ВКПМ В-8811, используемый для очистки почвы, грунтовых и поверхностных вод от тринитротолуола in situ.
RU 2001111823 С2, 10.05.2003 | |||
СПОСОБ МИКРОБИОЛОГИЧЕСКОГО ОКИСЛЕНИЯ МЕТИЛЬНЫХ ГРУПП АРОМАТИЧЕСКОГО ГЕТЕРОЦИКЛА ДО КАРБОНОВОЙ КИСЛОТЫ | 1991 |
|
RU2037523C1 |
ШТАММ БАКТЕРИЙ PSEUDOMONAS ALCALIGENES MEV, ИСПОЛЬЗУЕМЫЙ ДЛЯ ОЧИСТКИ ПОЧВ, ГРУНТОВЫХ И ПОВЕРХНОСТНЫХ ВОД ОТ НЕФТИ И ПРОДУКТОВ ЕЕ ПЕРЕРАБОТКИ | 2002 |
|
RU2228953C2 |
ЕР 1132462, 12.09.2001 | |||
US 5656169, 12.08.1997. |
Авторы
Даты
2007-01-27—Публикация
2004-12-23—Подача