СПОСОБ ИЗГОТОВЛЕНИЯ ВТОРИЧНОГО ТВЕРДОТЕЛЬНОГО ИСТОЧНИКА ТОКА Российский патент 2007 года по МПК H01M6/18 

Описание патента на изобретение RU2295177C2

Изобретение относится к области электротехники, а именно к способу изготовления вторичных твердотельных источников тока (аккумуляторов).

Настоящее изобретение касается метода изготовления твердотельных источников тока с высокой удельной энергоемкостью и безопасностью на основе твердых суперионных проводников ионов фтора и включает в себя следующие шаги:

- обеспечение контакта между коллектором тока, анодом, электролитом, катодом коллектором тока в указанной последовательности. При этом материалы анода и катода обладают обратимостью твердофазной реакции фторирование/дефторирование, а материал твердого электролита имеет высокую ионную проводимость фтора в твердой фазе и низкую, практически отсутствующую, электронную проводимость.

- Спекание источника тока, состоящего из коллектора тока, анода, электролита, катода коллектором тока в указанной последовательности. Спекание проводится обжигом и термоэлектрическим воздействием.

В настоящем изобретении под источником тока понимается как отдельный гальванический элемент, состоящий из коллектора тока, анода, электролита, катода, коллектором тока в указанной последовательности, так и батарея, состоящая из нескольких гальванических элементов с различными вариантами коммутации, как последовательной, так и параллельной.

По своему составу анод, электролит и катод в заявляемом способе изготовления твердотельных вторичных источников тока с высокой удельной энергоемкостью могут соответствовать устройству источника тока, в котором

- анод выполнен из металлов Li, K, Na, Sr, Ba, Ca, Mg, Al, Се, La или из их сплавов, или из сплавов этих металлов с Pb, Cu, Bi, Cd, Zn, Co, Ni, Cr, Sn, Sb, Fe, а в заряженном состоянии источника тока соответственно из их фторидов.

- катод в заряженном состоянии источника тока выполнен из фторидов: MnF2, MnF3, TaF5, NdF5, VF3, VF5, CuF, CuF2, AgF, AgF2, BiF3, PbF2, PbF4, CdF2, ZnF2, CoF2, CoF3, NiF2, CrF2, CrF3, CrF5, GaF3, InF2, InF3, GeF2, SnF2, SnF4, SbF3, MoF5, WF5 фторированного графита или из их сплавов или из их смесей, а разряженном состоянии источника тока из Mn, Та, Nd, VF, Cu, Ag, Bi, Pb, Cd, Zn, Co, Ni, Cr, Ga, In, Ge, Sn, Sb, Mo, W, графита или из их сплавов или из их смесей.

- твердый электролит выполнен из фторидов La, Се или из сложных фторидов на их основе, содержащих дополнительно фторид или фториды щелочно-земельных металлов (CaF2, SrF2, BaF2) и (или) фториды щелочных металлов (LiF, KF, NaF,) и (или) хлориды щелочных металлов (LiCl, KCl, NaCl,). Также может быть из сложных фторидов на основе фторидов щелочноземельных металлов (CaF2, SrF2, BaF2), дополнительно содержащих фториды редкоземельных металлов и (или) фториды щелочных металлов (LiF, KF, NaF) и (или) хлориды щелочных металлов (LiCl, KCl, NaCl). Также может быть из фторидов на основе PbF2, содержащих SrF2, или BaF2, или CaF2, или SnF2 и добавку KF. Также может быть из фторидов на основе BiF3, содержащих SrF2, или BaF2, или CaF2, или SnF2 и добавку KF.

и в составе анода, электролита и катода содержится компонент или компоненты, предотвращающие разрушение твердотельной батареи при заряд-разрядных циклах.

Известен способ изготовления твердотельных источников тока на основе твердых фтор-ионных проводников /1/, в котором для изготовления твердотельных фтор-ионных гальванических элементов в виде многослойных структур был использован метод послойного прессования порошковых материалов анодного, электролитного и катодного материалов.

Недостатком данного способа является то, что, используя исходные твердые ионные проводники с достаточно высоким уровнем проводимости, в изготовленных источниках тока сопротивление возрастает в 100 и более раз по сравнению с сопротивлением материала твердых ионных проводников. Это связано с тем, что спрессованные структуры из порошков твердых ионных проводников, в частности электролитного материала, имеют очень высокое сопротивление на границах раздела между частицами в подобных поликристаллических слоях. Это широко известный факт для поликристаллических структур, полученных из порошков ионных проводников, изготовленных методом прессования /2/. При этом большое сопротивление имеют также границы раздела анод/электролит и электролит/катод, сопротивление которых в значительной степени определяет высокое внутреннее сопротивление твердотельных источников тока, изготовленных известным способом. Достигнутая при этом согласно /1/ мощность разряда источников тока при 25°С составляет микроватты, что значительно ограничивает область использования, и применение таких источников может быть эффективным только при высоких температурах, к примеру, выше 250-300°С.

Наиболее близким к заявляемому способу изготовления вторичного твердотельного источника тока является способ, приведенный в /3/. В этом известном способе изготовление химического твердотельного источника тока производится путем нанесения на обе стороны твердого электролита слоев активной массы электродов разной полярности с последующим обжигом и одновременным электротермическим воздействием при пропускании через электроды электрического тока при поляризации на электродах, не превышающей напряжение разложения электролита.

Известный способ изготовления твердотельного источника тока имеет следующие недостатки:

1. Нанесение на обе стороны твердого электролита слоев активных масс электродов разной полярности (анода и катода) не позволяет производить источники тока высокого качества, вследствие, как правило, очень высокой химической активности анодного материала. Это приводит к тому, что особенно в условиях обжига при высоких температурах имеет место изменение химического состава электродов, что приводит к снижению качества изготовления и ухудшению характеристик источника тока, в частности к повышению внутреннего сопротивления источника тока.

2. Для частичного предотвращения загрязнения электродных материалов источника тока при его изготовлении требуется обжиг в инертной среде с жестким технологическим регламентом по содержанию кислорода, азота, влаги, что усложняет способ изготовления.

3. При термоэлектрической обработке постоянным электрическим током происходит, наряду со спеканием электродных материалов к электролиту, изменение химического состава электродных материалов, что приводит к снижению качества и повышению внутреннего сопротивления источника тока.

Задачей настоящего изобретения является создание способа изготовления вторичного твердотельного источника тока, позволяющего повысить качество изготовления и снизить внутреннее сопротивления твердотельного источника тока.

Важно отметить, что проблемы, связанные с достижением низкого внутреннего сопротивления при изготовлении твердотельных источников тока, являются очень актуальными. Твердотельные источники тока на основе твердых суперионных проводников имеют, как правило, высокое внутреннее сопротивление из-за низкой ионной проводимости твердых ионных проводников и очень высокой чувствительности ионной проводимости к загрязнению твердых ионных проводников. Это обстоятельство ограничивает область использования твердотельных источников тока и решение задачи по снижению внутреннего сопротивления, имеет важное практическое значение.

Технический результат, достигаемый при использовании изобретения, заключается в следующем:

1. Сохранение химического состава анодного и катодного материалов при обжиге.

2. Сохранение химического состава анодного и катодного материалов при термоэлектрическом воздействии.

3. Повышение качества спекания анодного, катодного и электролитного материалов и границ раздела анод/электролит и электролит/катод твердотельного источника тока, что приводит к существенному снижению внутреннего сопротивления.

Для достижения указанных задачи и технического результата предлагается способ изготовления вторичного твердотельного источника тока путем нанесения на обе стороны твердого электролита анодного и катодного материалов с последующим обжигом и термоэлектрическим воздействием при пропускании электрического тока с поляризацией на электродах ниже напряжения разложения электролита, при этом согласно изобретению анод и катод выполняют из материалов, соответствующих по составу анодному и катодному материалу полностью разряженного источника тока, а термоэлектрическое воздействие проводят переменным электрическим током.

В предлагаемом способе изготовления твердотельного вторичного источника тока согласно изобретению:

1. При нанесении на обе стороны электролита анодного и катодного электродов в виде материалов с низкой химической активностью, соответствующих анодному и катодному материалу полностью разряженного источника тока, обеспечивается сохранение химического состава анодного и катодного материалов при обжиге, что обеспечивает повышение качества изготовления и не приводит к повышению внутреннего сопротивления источника тока.

2. При проведении термоэлектрического воздействия переменным электрическим током не изменяется химический состав анодного и катодного электродов. Повышение качества спекания анодного, катодного и электролитного материалов и границ раздела анод/электролит и электролит/катод твердотельного источника тока. При переменном электрическом токе наблюдается переменное повышение температуры в локальных местах источника тока, которые имеют наибольшее сопротивление, это приводит к интенсивному спеканию этих областей и снижению сопротивления, что, в итоге, является важным для снижения сопротивления источника тока в целом. Периодический нагрев этих областей также важен для протекания релаксационных механических процессов, которые имеют место при обжиге, что повышает качество изготовления при обжиге.

Термоэлектрическое воздействие может быть эффективно реализовано, когда воздействие проводят переменным током различной полярности, переменным током синусоидальной формы или переменным током синусоидальной формы промышленной частоты. Использование синусоидальной формы промышленной частоты является очень доступным для промышленного производства твердотельных вторичных источников тока по заявляемому способу изготовления. Термоэлектрическое воздействие в заявляемом способе может проводиться как при температуре обжига, так и при других условиях, как одновременно с обжигом, так и как дополнительная операция, приводящая к достижению поставленных задачи и технического результата. Промышленная применимость заявляемого способа была установлена опытным путем. На твердый электролит тисонитной структуры, состоящий из твердого раствора LaF3-BaF2, были нанесены электроды: анодный, содержащий LaF3 и катодный, содержащий Ag. Последующий обжиг при температуре 800С с термоэлектрическим воздействием током синусоидальной формы промышленной частоты позволил получить структуру с низким внутренним сопротивлением. При последующих заряд - разрядных циклах источник тока с НРЦ 3,7 В имел устойчивые разрядные характеристики при напряжении разряда до 1,5 В.

Литература

1. Патент РФ №2136083, Н 01 М 6/18, опубл. БИ №24, 1999 г.

2. А.К.Иванов-Шиц, И.В.Мурин. Ионика твердого тела. т.1, Санкт-Петербургский университет, 2000, с.73-74.

3. Патент SU №1106382, Н 01 М 6/18, опубл. 10.10.99.

Похожие патенты RU2295177C2

название год авторы номер документа
ТВЕРДОТЕЛЬНЫЙ ВТОРИЧНЫЙ ИСТОЧНИК ТОКА 2005
  • Потанин Александр Аркадьевич
RU2295178C2
ТВЕРДОТЕЛЬНЫЙ ХИМИЧЕСКИЙ ИСТОЧНИК ТОКА 1997
  • Потанин А.А.
  • Веденеев Н.И.
RU2136083C1
СПОСОБ ПРОИЗВОДСТВА МАТЕРИАЛА ИЗ НАНОЧАСТИЦ И ФТОРИД-ИОННЫХ АККУМУЛЯТОРОВ 2018
  • Виттер, Райкер
  • Мохаммад, Иршад
  • Молаийан, Паланивел
  • Кумар, Суреш
RU2764283C2
ФТОР-ПРОВОДЯЩИЙ ТВЕРДЫЙ ЭЛЕКТРОЛИТ RMF С ТИСОНИТОВОЙ СТРУКТУРОЙ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2014
  • Сорокин Николай Иванович
  • Соболев Борис Павлович
  • Каримов Денис Нуриманович
RU2557549C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИКРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ ИОННОГО ПРОВОДНИКА 2003
  • Потанин А.А.
  • Стриканов А.В.
  • Лашков В.Н.
  • Селезенев А.А.
RU2247628C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТВЕРДОТЕЛЬНОГО ЭЛЕКТРОХИМИЧЕСКОГО ЭЛЕМЕНТА 1991
  • Потанин А.А.
  • Дудоров И.В.
  • Безмельницын В.Н.
RU2025004C1
ТВЕРДОТЕЛЬНЫЙ ХИМИЧЕСКИЙ ИСТОЧНИК ТОКА 1999
  • Потанин А.А.
  • Веденеев Н.И.
RU2187178C2
ВЫСОКОАКТИВНАЯ МНОГОСЛОЙНАЯ ТОНКОПЛЕНОЧНАЯ КЕРАМИЧЕСКАЯ СТРУКТУРА АКТИВНОЙ ЧАСТИ ЭЛЕМЕНТОВ ТВЕРДООКСИДНЫХ УСТРОЙСТВ 2016
  • Липилин Александр Сергеевич
  • Шкерин Сергей Николаевич
  • Никонов Алексей Викторович
  • Гырдасова Ольга Ивановна
  • Спирин Алексей Викторович
  • Кузьмин Антон Валерьевич
RU2662227C2
ПОЛНОСТЬЮ ТВЕРДОТЕЛЬНАЯ ВТОРИЧНАЯ ЛИТИЙ-ИОННАЯ БАТАРЕЯ (ВАРИАНТЫ) 2018
  • Мицутоси Отаки
  • Норихиро Осэ
  • Сигэнори Хама
  • Кадзуюки Танигути
  • Ямада
  • Тэцуо Наканиси
RU2687959C1
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛОВ ЭЛЕКТРОЛИЗОМ РАСПЛАВЛЕННЫХ СОЛЕЙ 2004
  • Поляков Петр Васильевич
  • Симаков Дмитрий Александрович
RU2274680C2

Реферат патента 2007 года СПОСОБ ИЗГОТОВЛЕНИЯ ВТОРИЧНОГО ТВЕРДОТЕЛЬНОГО ИСТОЧНИКА ТОКА

Изобретение относится к области электротехники, а именно к изготовлению вторичных твердотельных источников тока (аккумуляторов). Согласно изобретению способ изготовления вторичного твердотельного источника тока путем нанесения на обе стороны твердого электролита анодного и катодного материалов с последующим обжигом и термоэлектрическим воздействием при пропускании электрического тока с поляризацией на электродах ниже напряжения разложения электролита, при этом на обе стороны электролита наносят анодный и катодный электроды в виде материалов, соответствующих по составу анодному и катодному материалу разряженного источника тока, а термоэлектрическое воздействие проводят переменным электрическим током. Технический результатом изобретения является сохранение химического состава анодного и катодного материалов при обжиге и повышение качества спекания анодного, катодного и электролитного материалов. 2 з.п. ф-лы.

Формула изобретения RU 2 295 177 C2

1. Способ изготовления вторичного твердотельного источника тока путем нанесения на одну сторону твердого электролита анодного, на другую - катодного материалов с последующим обжигом и термоэлектрическим воздействием при пропускании электрического тока с поляризацией на электродах ниже напряжения разложения электролита, отличающийся тем, что анод и катод выполняют из материалов, соответствующих по составу анодному и катодному материалу разряженного источника тока, а термоэлектрическое воздействие проводят переменным электрическим током.2. Способ изготовления вторичного твердотельного источника тока по п.2, отличающийся тем, что термоэлектрическое воздействие проводят переменным током синусоидальной формы.3. Способ изготовления вторичного твердотельного источника тока по п.3, отличающийся тем, что термоэлектрическое воздействие проводят переменным током синусоидальной формы промышленной частоты.

Документы, цитированные в отчете о поиске Патент 2007 года RU2295177C2

SU 1106382 A1, 10.10.1999
ТВЕРДОТЕЛЬНЫЙ ХИМИЧЕСКИЙ ИСТОЧНИК ТОКА 1997
  • Потанин А.А.
  • Веденеев Н.И.
RU2136083C1
Многокамерная сушилка 1935
  • Панов С.В.
SU55135A1
US 4216279 A, 05.08.1980.

RU 2 295 177 C2

Авторы

Потанин Александр Аркадьевич

Даты

2007-03-10Публикация

2005-04-21Подача