УСТРОЙСТВО ДЛЯ ВОДОВОЗДУШНОГО ОХЛАЖДЕНИЯ Российский патент 2007 года по МПК C21D1/667 C21D9/50 

Описание патента на изобретение RU2295579C1

Изобретение относится к трубопрокатному производству и может быть использовано при осуществлении регулируемого охлаждения зоны сварного соединения (ЗСС) бурильных труб в поточных линиях при их термической обработке.

Известны: устройство водовоздушного охлаждения изделий (авт. св. СССР №1381173, М. кл. С 21 D 1/62, опубл. 15.03.88), содержащее корпус с газовым и жидкостным соплами, смесительную камеру с отверстиями для истечения охладителя и дополнительные смесительные камеры, которые расположены последовательно и сообщены между собой с помощью отверстий с переменным проходным сечением, увеличивающимся по ходу движения охладителя, размещенных в шахматном порядке относительно друг друга; устройство для водовоздушного охлаждения изделий из различных металлов и сплавов, преимущественно арматурной стали и прокатных валков (авт. св. СССР №1189886, М. кл. С 21 D 1/62, опубл. 07.11.1985), включающее сопла для подачи воды и сжатого воздуха и распыливающую сетку, установленную с возможностью перемещения относительно сопел, камеру, установленную между соплами и сеткой и выполненную в виде направляющей трубы с отверстиями в ее стенке, при этом ось воздушного сопла перпендикулярна поверхности сетки, а ось водяного сопла параллельна ей, и водяное сопло расположено между воздушным соплом и сеткой; устройство для водовоздушного охлаждения изделий при термообработке (авт. св. СССР №619525, М. кл. С 21 D 1/62, опубл. 15.08.1978), содержащее соединенную со спрейером смесительную камеру, состоящую из трубопровода для подачи воды с расположенной в нем трубкой с отверстиями для подвода воздуха, трубопровод для подачи воды выполнен в виде противоположно направленных колен, в месте соединения которых расположена трубка с отверстиями, выполненными по винтовой линии и размещенными в полости колена, связанного со спрейером; устройство для охлаждения изделий (авт. св. СССР №1224345, М. кл. С 21 D 1/62, опубл. 15.04.1986), содержащее внутреннее сопло, охватывающее его наружное щелевое сопло и насадок с перегородкой, имеющей цилиндрические отверстия, расположенные по окружности, внутреннее сопло выполнено коническим, перегородка в центре имеет коническое отверстие, образующее с внутренним соплом наружное щелевое сопло, при этом насадок выполнен цилиндрическим и установлен с возможностью перемещения по оси устройства, а цилиндрические отверстия перегородки направлены под острым углом на внутреннюю поверхность насадка.

Недостатками вышеописанных устройств для охлаждения являются сложность конструкции, значительные размеры при организации двухстороннего охлаждения, например, трубных изделий и неравномерное охлаждение труб из-за трудности поддержания одинаковых параметров водовоздушной смеси в каждом из устройств, расположенных по периметру.

Наиболее близким техническим решением, взятым за прототип, является устройство для охлаждения листа при прокатке (авт. св. СССР №1210934, М. кл. В 21 В 45/02, опубл. 15.02.1986), включающее тракты для подготовки и подачи воды и воздуха и присоединенную к ним смесительную камеру с входными патрубками воды и воздуха, связанную посредством выходного патрубка с соплами, выходной патрубок установлен с возможностью осевого перемещения внутри камеры, а камера заполнения твердым дисперсным материалом имеет перегородку, расположенную между входными патрубками воды и воздуха.

Недостатком прототипа является сложность конструкции и низкая равномерность охлаждения.

Техническая задача, решаемая изобретением, заключается в создании рациональной конструкции охлаждающего устройства, обеспечивающего регулируемое, равномерное охлаждение ЗСС бурильных труб в линиях их термической обработки.

Поставленная задача решается за счет того, что в устройстве для водовоздушного охлаждения, включающем тракты подачи воды и воздуха и присоединенную к ним смесительную камеру с входными патрубками воды и воздуха, связанную посредством выходного патрубка с соплами, входной патрубок воздуха выполнен в виде расположенных соосно один в другом и смесительной камере патрубков с индивидуальными трактами подачи воздуха к каждому, внутренний патрубок соединен с входным патрубком воды через сопловое отверстие, наружный патрубок с выходной стороны закрыт распыливающей сеткой, а с другой стороны к смесительной камере симметрично ее оси прикреплен распределитель потоков с выходными патрубками, внутри которых перед соплами установлен конфузор, при этом внутренний входной патрубок воздуха выполнен с возможностью осевого перемещения, смесительная камера выполнена в виде подвижного телескопического соединения, а на выходе внутреннего входного патрубка воздуха установлено сопло.

Изобретение иллюстрируется чертежом, где представлен общий вид устройства в разрезе, поз. а - вид по А, поз. б - сечение Б-Б.

Устройство для водовоздушного охлаждения включает тракты подачи воды 1 и воздуха 2 и 3, присоединенную к ним смесительную камеру 4 с входными патрубками воды 5 и воздуха 6 и 7, связанную посредством выходных патрубков 8 и 9 с соплами 10. Входные патрубки воздуха 6 и 7 расположены соосно один в другом и смесительной камере 4, соединены с индивидуальными трактами подачи воздуха 2 и 3 соответственно. Это позволяет организовать регулируемое двухступенчатое распыление воды, используя для первичного распыления высокопотенциальный сжатый воздух в патрубке 7, а для вторичного распыления - сжатый воздух низкого давления в патрубке 6. Патрубок 7 соединен с трактом подачи воздуха 3 через резьбовую втулку 11, что позволяет производить осевое перемещение патрубка 7 внутри патрубка 6, и с входным патрубком воды 5 через сопловое отверстие 12, обеспечивающее дозирование и диспергирование воды, подаваемой внутрь патрубка 7. На выходной стороне патрубка 7 установлено сопло 13. Выходная сторона патрубка 6 закрыта распыливающей сеткой 14, обеспечивающей дробление крупных капель воды в смеси. С другой стороны к смесительной камере 4 соосно прикреплен распределитель потоков - фланец 15 с выходными патрубками 8 и 9, внутри которых перед соплами 10 установлены конфузоры 16. Выходные патрубки 8 в фланце 15 расположены равномерно по окружности симметрично оси патрубка 9, установленного соосно камере 4. С внутренней стороны фланца 14 на входных отверстиях патрубков 8 и 9 выполнены фаски, которые занимают всю его внутреннюю поверхность. Это позволяет наряду с уменьшением входного сопротивления обеспечить организованную и равномерную подачу влаги, конденсирующейся на внутренней поверхности фланца, по патрубками 8 и 9.

Выполнение смесительной камеры 4 в виде телескопического соединения с уплотнением 17 позволяет оперативно изменять ее объем в процессе охлаждения. Возвратно-поступательное перемещение подвижной части телескопического соединения 18 обозначено противоположно направленными стрелками, привод на чертеже не показан. В нижней части камеры смешения 4 вблизи фланца 15 выполнена приемная емкость 19 для сбора и удаления влаги, образующейся на стенках камеры 4 при работе устройства.

Предлагаемое устройство для водовоздушного охлаждения работает следующим образом. В начальный период включают подачу сжатого воздуха в патрубки 6 и 7 с давлениями соответственно P1 и Р2 и производят продувку устройства от остатков влаги. Затем от тракта 1 по патрубку 5 внутрь патрубка 7 через сопловое отверстие 12 подают воду с давлением Р3, которая дробится потоком сжатого воздуха (воздух первичного распыления), движущимся по патрубку 7, и далее, истекая из сопла 13, подвергается первичному распылению с образованием на выходе из него струи водовоздушной смеси, которая, взаимодействуя с потоком воздуха (воздух вторичного распыления), выходящего из кольцевого зазора между патрубками 6 и 7, получает вторичное распыление. При прохождении через распыливающую сетку 14 происходит дробление находящихся в водовоздушной смеси крупных капель воды. Далее водовоздушная смесь поступает в камеру смешения 4, где происходит раскрытие факела струи и ее разделение на поверхности фланца 15 на потоки, направляемые в выходные патрубки 8 и 9, по которым она транспортируется к конфузорам 16 и далее через сопла 10 направляется на поверхность ЗСС бурильной трубы 20 симметрично плоскости сплавления 21. Капельная влага, оседающая на стенках патрубков 8 и 9, дробится при прохождении через конфузор 16. Влага, осевшая на стенках смесительной камеры, стекает в приемную емкость 19 и затем удаляется через дренажное отверстие. Это позволяет избежать ее попадания в нижние выходные патрубки 8 и тем самым повысить равномерность охлаждения.

Такое многоступенчатое распыление воды позволяет получить стабильную, устойчивую при транспортировке водовоздушную смесь и обеспечить равномерное охлаждение ЗСС по периметру.

Регулирование интенсивности охлаждения ЗСС осуществляется за счет изменения количества воды, подаваемой на распыление, и скоростных режимов воздуха первичного и вторичного распыления. Варьирование интенсивности охлаждения на внутренней и наружной поверхностях ЗСС осуществляется двумя способами. В первом - изменением положения сопла 13 внутри патрубка 6 относительно распыливающей сетки 11 путем ввертывания - вывертывания патрубка 7 в резьбовой втулке 11 с одновременным изменением параметров воздуха первичного и вторичного распыления. При этом регулируется форма водовоздушной струи на входе в камеру смешения и тем самым степень насыщения факела распыленной водой по радиусу. При приближении сопла 13 к распиливающей сетке 14 и/или увеличении расхода воздуха вторичного распыления происходит снижение содержания распыленной воды в периферийной части поперечного сечения факела в камере смешения с увеличением содержания распыленной воды в центральной, что приводит при последующем разделении его на потоки на фланце 15 к увеличению влагонасыщения смеси в центральном выходном патрубке 9 и уменьшению - в патрубках 8 и тем самым к повышению интенсивности внутреннего охлаждения и понижению наружного. При удалении сопла 13 от распыливающей сетки 14 и/или уменьшении расхода воздуха вторичного распыления происходит увеличение содержания распыленной воды в периферийной части поперечного сечения факела водовоздушной смеси в камере смешения и снижение в центральной, что приводит к снижению интенсивности внутреннего охлаждения и увеличению наружного.

Во втором случае регулирование осуществляют за счет изменения длины смесительной камеры 4 путем перемещения подвижной части телескопа 18. При этом изменяются длина и форма факела водовоздушной смеси в камере смешения и степень насыщения его распыленной водой по длине и радиусу.

При сокращении камеры смешения 4 снижаются степень раскрытия факела водовоздушной смеси в ней, и на выходе камеры уменьшается количество распыленной воды в периферийной части поперечного сечения факела с увеличением ее в центральной, что приводит к увеличению распыленной воды в смеси, подаваемой на внутреннюю поверхность ЗСС, и уменьшению в смеси подаваемой к наружной и тем самым к повышению интенсивности внутреннего охлаждения и понижению наружного. При удлинении камеры смешения 4 происходит увеличение степени раскрытия факела водовоздушной смеси, приводящее к увеличению содержания распыленной воды в его периферийной части поперечного сечения на выходе камеры 4 с уменьшением в центральной, что ведет к понижению интенсивности внутреннего охлаждения и повышению наружного. Периодически изменяя в процессе охлаждения длину камеры 4, можно обеспечить циклическое регулирование интенсивности охлаждения на наружной и внутренней поверхностях ЗСС.

Таким образом, в предлагаемом устройстве возможно регулирование как общей интенсивности охлаждения, так и варьирование интенсивности наружного и внутреннего охлаждения ЗСС бурильных труб. Работа предлагаемого устройства для охлаждения водовоздушной смесью, выполненного по п.1 формулы, опробована в цехе Т-2 ОАО "СинТЗ" в поточной линии участка термической обработки ЗСС бурильных труб. Для этого в существующей камере охлаждения было смонтировано предлагаемое устройство. В поточной линии осуществляли термическую обработку на группу прочности «X 95» бурильных труб размером 73,0×9,19 мм. Тело трубы из стали марки 32ХМА, замок - сталь марки 40ХМФА, толщина зоны высадки 17 мм. После приварки замков и удаления грата ЗСС подвергали термической обработке: нормализации при температуре 950°С с последующим двухсторонним водовоздушным охлаждением ЗСС до температуры 30-50°С в предлагаемом устройстве. Отпуск ЗСС проводился при температуре 680°С.

Результаты термической обработки ЗСС бурильных труб показали, что при использовании предлагаемого устройства за счет эффективного и равномерного охлаждения улучшился комплекс и снизился разброс механических свойств по периметру сварного соединения (табл.).

Таким образом, в предлагаемом устройстве возможно регулирование как общей интенсивности охлаждения, так и варьирование интенсивности наружного и внутреннего охлаждения ЗСС бурильных труб.

ТаблицаСвойства зоны сварного соединения после термической обработки по существующей технологии и с использованием предлагаемого устройстваТехнологияМеханические свойстваσв, кгс/см2σт, кгс/см2δ5, %Ψ, %KV+21 футов/фунтовСуществующая78,1-89,359,7-76,816,3-17,362-727,0-15,0С использование предлагаемого устройства85,4-91,272,6-80,018,0-18,667-6947,5-50,2Требования API 5D Х95-≥41,55--≥12,0

Предлагаемое устройство хорошо вписывается в пространство камер охлаждения существующей в цехе поточной линии термической обработки ЗСС бурильных труб и позволяет осуществить их равномерное регулируемое охлаждение.

Похожие патенты RU2295579C1

название год авторы номер документа
ДОЖДЕОБРАЗУЮЩЕЕ УСТРОЙСТВО ДОЖДЕВАЛЬНОЙ МАШИНЫ 2022
  • Дуброва Юрий Николаевич
  • Вчерашний Евгений Александрович
  • Мажайский Юрий Анатольевич
  • Голубенко Михаил Иванович
  • Яланский Дмитрий Владимирович
RU2793352C1
Устройство для вторичного охлаждения непрерывнолитой заготовки 1984
  • Целиков Андрей Александрович
  • Смоляков Анатолий Соломонович
  • Ганкин Владимир Борисович
  • Айзин Юрий Моисеевич
  • Баккал Александр Робертович
SU1201050A1
ПНЕВМАТИЧЕСКАЯ ФОРСУНКА 1991
  • Балфанбаев О.К.
  • Степанов В.В.
  • Орлова С.М.
  • Оралбаев К.Б.
  • Шайфуллин Г.Ш.
  • Костырин А.В.
  • Жумангазин К.Ж.
  • Терешков И.Б.
RU2015347C1
КОНДИЦИОНЕР 2011
  • Курносов Николай Ефимович
  • Иноземцев Дмитрий Сергеевич
RU2579722C2
УСТРОЙСТВО ДЛЯ ВТОРИЧНОГО ОХЛАЖДЕНИЯ НЕПРЕРЫВНОЛИТОГО СЛИТКА 2003
  • Ордин В.Г.
  • Ламухин А.М.
  • Лунев А.Г.
  • Загорулько В.П.
  • Панин Г.В.
  • Зинченко С.Д.
  • Куклев А.В.
  • Паршин В.М.
  • Айзин Ю.М.
  • Гудков А.В.
RU2236325C1
Линия производства искусственного снега для нужд сельского хозяйства 2019
  • Сыроватка Владимир Иванович
  • Жданова Наталья Владимировна
  • Обухов Андрей Дмитриевич
RU2701303C1
УСТРОЙСТВО ВТОРИЧНОГО ОХЛАЖДЕНИЯ НЕПРЕРЫВНОЛИТЫХ ЗАГОТОВОК 1992
  • Белый В.А.
  • Клочай В.В.
  • Ковалев В.А.
  • Луканин Ю.В.
  • Лунев А.Г.
  • Фабричный В.С.
  • Цветков А.Д.
  • Чумаков С.М.
RU2033889C1
Устройство для охлаждения проката 1980
  • Узлов Иван Герасимович
  • Кобеза Иван Иванович
  • Нагний Станислав Иванович
  • Савенков Владимир Яковлевич
  • Ганзуля Александр Петрович
  • Налча Георгий Иванович
  • Голубченко Анатолий Константинович
  • Тодуров Анатолий Федорович
  • Старицкий Юрий Аркадьевич
  • Пефтиев Владимир Михайлович
  • Дунаевский Владимир Трофимович
  • Некраш Анатолий Андреевич
  • Руднев Анатолий Ефимович
  • Пикула Владимир Иванович
  • Бабич Владимир Константинович
  • Трегубов Виктор Викторович
SU990833A1
Форсунка для водовоздушного охлаждения непрерывнолитых заготовок прямоугольного сечения 1982
  • Николаев Владимир Артемьевич
  • Есаулов Владимир Сергеевич
  • Мураш Игорь Васильевич
  • Лисицкий Владимир Владимирович
  • Лебедь Александр Трофимович
  • Семеньков Виталий Иванович
  • Фруль Виктор Андреевич
  • Сопочкин Анатолий Игнатьевич
  • Нещерет Павел Александрович
  • Носоченко Олег Васильевич
  • Лебедев Владимир Ильич
  • Сурженко Валентин Дмитриевич
  • Николаев Геннадий Андреевич
  • Емельянов Владимир Владимирович
SU1101326A1
СПОСОБ И УСТРОЙСТВО ДЛЯ ТЕПЛОВЛАЖНОСТНОЙ ОБРАБОТКИ ВОЗДУХА 2011
  • Курносов Николай Ефимович
  • Иноземцев Дмитрий Сергеевич
RU2579724C2

Реферат патента 2007 года УСТРОЙСТВО ДЛЯ ВОДОВОЗДУШНОГО ОХЛАЖДЕНИЯ

Изобретение относится к области трубопрокатного производства при осуществлении регулируемого охлаждения зоны сварного соединения (ЗСС) бурильных труб в поточных линиях при их термической обработке. Для создания рациональной конструкции охлаждающего устройства, обеспечивающего регулируемое равномерное охлаждение ЗСС бурильных труб в линиях их термической обработки. Устройство включает тракты подачи воды и воздуха и присоединенную к ним смесительную камеру с входными патрубками воды и воздуха, связанную посредством выходного патрубка с соплами, входной патрубок воздуха выполнен в виде расположенных соосно один в другом и смесительной камере внутреннего и наружного патрубков с индивидуальными трактами подачи воздуха к каждому, внутренний патрубок соединен с входным патрубком воды через сопловое отверстие, наружный патрубок с выходной стороны имеет распыливающую сетку, а смесительная камера имеет расположенный симметрично ее оси распределитель потоков с выходными патрубками, внутри которых перед соплами установлен конфузор, при этом внутренний входной патрубок воздуха выполнен подвижным, а смесительная камера - телескопической, на выходе внутреннего входного патрубка воздуха установлено сопло. 3 з.п. ф-лы, 1 табл., 1 ил.

Формула изобретения RU 2 295 579 C1

1. Устройство для водовоздушного охлаждения изделий при термообработке, включающее тракты подачи воды и воздуха и присоединенную к ним смесительную камеру с входными патрубками воды и воздуха, связанную посредством выходного патрубка с соплами, отличающееся тем, что входной патрубок воздуха выполнен в виде расположенных соосно один в другом и смесительной камере патрубков с индивидуальными трактами подачи воздуха к каждому, внутренний патрубок соединен с входным патрубком воды через сопловое отверстие, наружный патрубок с выходной стороны закрыт распыливающей сеткой, а с другой стороны к смесительной камере симметрично ее оси прикреплен распределитель потоков с выходными патрубками, внутри которых перед соплами установлен конфузор.2. Устройство по п.1, отличающееся тем, что внутренний входной патрубок воздуха выполнен с возможностью осевого перемещения.3. Устройство по п.1 или 2, отличающееся тем, что смесительная камера выполнена в виде подвижного телескопического соединения.4. Устройство по п.1 или 2, отличающееся тем, что на выходе внутреннего входного патрубка воздуха установлено сопло.

Документы, цитированные в отчете о поиске Патент 2007 года RU2295579C1

Устройство для охлаждения листа при прокатке 1984
  • Локшин Александр Борисович
  • Казачкова Марина Евгеньевна
  • Землянский Владимир Петрович
  • Коротков Борис Алексеевич
SU1210934A1
УСТРОЙСТВО ДЛЯ ОХЛАЖДЕНИЯ ЗАГОТОВОК 1993
  • Мордовин М.Д.
  • Салабуто С.Е.
RU2078833C1
РАСПРЕДЕЛИТЕЛЬНОЕ КОЛЛЕКТОРНОЕ УСТРОЙСТВО ГАЗОЖИДКОСТНОЙ СМЕСИ 1999
  • Юровский Н.А.
  • Траянов Г.Г.
  • Литвинов А.Н.
  • Одиноких В.В.
  • Постыляков Л.В.
  • Никитина В.И.
  • Юдин Ю.В.
RU2164246C1
1970
SU412260A1
РАСПРЕДЕЛИТЕЛЬНОЕ КОЛЛЕКТОРНОЕ УСТРОЙСТВО ГАЗОЖИДКОСТНОЙ СМЕСИ 2000
  • Юровский Н.А.
RU2173717C1
УСТАНОВКА ВОДОВОЗДУШНОЙ ЗАКАЛКИ КРУПНОГАБАРИТНЫХ ПОКОВОК 2001
  • Закиров Р.А.
  • Корытько Н.Г.
  • Воробьев Н.И.
  • Мокринский А.В.
  • Антонов В.И.
  • Шабуров Д.В.
  • Кувайцев В.Н.
  • Юдин Ю.В.
  • Эйсмондт Ю.Г.
  • Пышминцев И.Ю.
  • Титов С.А.
  • Павлюк П.И.
RU2176274C1
УСТРОЙСТВО ДЛЯ ОХЛАЖДЕНИЯ ИЗДЕЛИЙ 1992
  • Нестеров Дмитрий Кузьмич[Ua]
  • Левченко Николай Филиппович[Ua]
  • Сапожков Валерий Евгеньевич[Ua]
  • Сахно Валерий Александрович[Ua]
  • Босый Владимир Николаевич[Ua]
  • Чабань Григорий Максимович[Ua]
  • Карпенко Виталий Федорович[Ua]
  • Юдина Валерия Николаевна[Ua]
RU2039093C1

RU 2 295 579 C1

Авторы

Бодров Юрий Владимирович

Грехов Александр Игоревич

Горожанин Павел Юрьевич

Жукова Светлана Юльевна

Злобарев Владимир Алексеевич

Кривошеева Антонина Андреевна

Лефлер Михаил Ноехович

Мануйлова Ирина Ивановна

Марченко Леонид Григорьевич

Пономарев Николай Георгиевич

Селиванов Владимир Яковлевич

Тихонцева Надежда Тахировна

Усов Владимир Антонович

Даты

2007-03-20Публикация

2005-07-15Подача