КОРРОЗИОННО-СТОЙКАЯ ДИСПЕРСИОННО-ТВЕРДЕЮЩАЯ СТАЛЬ Российский патент 2007 года по МПК C22C38/52 

Описание патента на изобретение RU2296177C1

Изобретение относится к области металлургии, а именно к созданию коррозионно-стойких дисперсионно-твердеющих сталей, упрочняемых химико-термической обработкой - цементацией или нитроцементацией, применяемых для деталей трения, работающих при температурах от - 70 до 500°С.

Известна применяемая в агрегатостроении сталь 15Х16Н3КАМФЧ (ЭК81) следующего химического состава (мас.%):

углерод0,12-0,18хром15,0-16,0никель2,0-3,0ванадий0,06-0,12молибден0,2-0,3кобальт0,3-1,3церий0,005-0,03лантан0,005-0,02азот0,05-0,1кремнийне более 0,6марганецне более 0,6железо и примесиостальное

(Авторское свидетельство СССР № 804710).

Недостатком этой стали является неудовлетворительная теплостойкость. Твердость 60HRC сохраняется после отпуска при 250°С, после 350°С твердость снижается до 58-59 HRC, при 500°С - до 52HRC.

Известна сталь следующего химического состава (мас.%):

углерод0,06-0,2кремний0,1-1,0марганец0,1-1,0хром10-13никельне более 1,0вольфрам1,0-1,8молибдентак, чтобы (W/2+Мо) не более 1,5кобальт0,5-2,0ванадий0,15-0,35ниобий0,04-0,15азот0,03-0,12кальций0,001-0,01железо и примесиостальное

(патент Франции № 2823226).

Сталь предназначена для изготовления труб, эксплуатируемых при высоких температурах.

Недостатком этой стали является неудовлетворительная коррозионная стойкость ввиду низкого содержания хрома и низкая твердость, так как суммарное количество молибдена и вольфрама не более 1,5%.

Известна жаропрочная сталь следующего химического состава (мас.%):

углерод0,05-0,2кремнийне более 0,1марганецне более 0,3хром8,0-13,0молибден1,5-3,0никель1,5-3,0ванадий0,05-0,3ниобий0,02-0,1железо и примесиостальное

(заявка Японии № 3296816).

Недостатком этой стали также является неудовлетворительная коррозионная стойкость после нитроцементации ввиду низкого содержания хрома.

Наиболее близкой к предлагаемой стали является, принятая за прототип, коррозионно-стойкая, цементуемая, дисперсионно-твердеющая сталь следующего химического состава (мас.%):

углерод0,1-0,25марганец0-1,0кремний0-1,0хром13,0-19,0молибден3,0-5,0ванадий0,25-1,25никель1,75-5,25кобальт5,0-14,0ниобий0,01-0,1бор0-0,02железоостальное

(патент США № 5424028).

Коррозионно-стойкая сталь, принятая за прототип, обладает рядом недостатков.

Она содержит чрезмерно большое количество элементов (ванадия, никеля, кобальта), препятствующих диффузионному проникновению углерода вглубь. Поэтому в промышленных условиях цементации, при температуре ниже 1000°С, на поверхности образуется сплошная корка карбидов, которая является вторичным препятствием росту глубины слоя, создает ложное представление о высокой твердости слоя, так как при толщине 0,1-0,15 мм, при общей глубине слоя 0,7-0,9 мм, находится в пределах припуска на шлифовку термообработанных деталей и удаляется при окончательной механической обработке. Поэтому такую сталь необходимо подвергать цементации при 1050-1100°С, для чего требуется специальное, нестандартное оборудование. При таких температурах практически невозможна нитроцементация. Для насыщения азотом требуется высокое давление насыщающей атмосферы, что возможно только в газостате.

Для достижения дисперсионно-карбидного упрочнения цементованного слоя необходимо добиться максимально полного растворения карбидов при нагреве под закалку. Избыточное количество сильных карбидообразователей - ванадия, молибдена, хрома, а также препятствие растворению карбидов молибдена и ванадия со стороны кобальта заставляют повышать температуру нагрева под закалку до 1150-1180°С. То есть, сталь, близкая по составу к быстрорежущей, создает в производстве технологические трудности, аналогичные быстрорежущим сталям. Кроме того, сталь имеет высокую стоимость из-за большого количества кобальта.

Технической задачей настоящего изобретения является создание цементуемой коррозионно-стойкой дисперсионно-твердеющей стали, способной выдерживать эксплуатационные температуры от - 70 до 500°С, сохраняя твердость упрочненной поверхности выше 59 HRC. При этом сталь должна быть достаточно технологичной в промышленном производстве, т.е. ее состав должен позволять получение цементованного слоя глубиной 1 мм и более при температуре цементации до 1000°С в промышленной цементационной печи. Сталь должна быть минимально легированной сильными карбидообразующими элементами и, вместе с тем, уровень легирования должен обеспечивать возможность упрочнения цементованного слоя за счет дисперсионно-карбидного твердения.

Для решения поставленной задачи предлагается коррозионно-стойкая, дисперсионно-твердеющая сталь, содержащая углерод, кремний, марганец, хром, никель, кобальт, молибден, ванадий, ниобий, железо, отличающаяся тем, что она дополнительно содержит вольфрам, церий, лантан, кальций, азот при следующем соотношении компонентов (мас.%):

углерод0,12-0,19кремний0,1-0,6марганец0,1-0,6хром14-15никель2,3-3,3кобальт1,0-4,0молибден1,5-2,3ванадий0,1-0,2вольфрам0,5-0,8ниобий0,06-0,12церий0,005-0,05лантан0,005-0,05кальций0,005-0,05азот0,05-0,1железоостальное

При этом суммарное содержание молибдена, вольфрама, ванадия, обеспечивающих дисперсионно-карбидное упрочнение цементованного слоя, составляет 2,1-3,3%, а суммарное содержание никеля и кобальта составляет 3,3-7,3%.

Соотношение аустенитообразующих элементов: углерода, никеля, кобальта, азота и ферритообразующих элементов: хрома, молибдена, ванадия, вольфрама подобрано так, что при нагреве для цементации и закалки образуется 100% аустенита, δ-феррит в структуре стали отсутствует.

Суммарное количество карбидообразующих элементов: хрома, молибдена, ванадия, вольфрама, ниобия не способствует образованию сплошной карбидной корки на поверхности при цементации и нитроцементации в области температур (950-1000)°С. Карбидная сетка по границам зерен не образуется.

Количество сильных карбидообразующих элементов: молибдена, вольфрама, ванадия подобрано минимальным для обеспечения растворения карбидов и карбонитридов при нагреве до минимально возможной температуры закалки 1050°С и последующего выделения субмелкодисперсных специальных карбидов при двух-трехкратном отпуске 530°С с получением твердости цементованного слоя в пределах 59-62 HRC и нитроцементованного слоя - 60-63 HRC.

Установлено, что при комплексном легировании стали молибденом и вольфрамом одинаково высокая твердость цементованного слоя получается при меньшем суммарном количестве этих элементов, чем при легировании только молибденом или только вольфрамом. Кроме того, для растворения карбидов, комплексно легированных молибденом и вольфрамом, требуется более низкая температура нагрева, чем для карбидов вольфрама и молибдена.

В предлагаемой стали содержится минимальное количество ванадия (0,1-0,2)%. Этот элемент хотя и способствует дисперсионному карбидному упрочнению цементованного слоя, повышая при этом необходимую температуру нагрева под закалку, вместе с тем сильно охрупчивает малоуглеродистую сердцевину, инициируя выделение спецкарбидов по плоскостям скольжения α-фазы при отпуске, так что порог хладноломкости стали после термообработки, обеспечивающей дисперсионное карбидное упрочнение цементованного слоя, поднимается выше 0°С в сердцевине. Поэтому количество ванадия выбрано минимальным (0,1-0,2)%, с целью обеспечения практически полного растворения его карбида при нагреве под закалку до 1050°С. При последующем отпуске (530°С) в первую очередь начинают выделяться специальные карбиды, содержащие преимущественно ванадий, и инициируют дальнейшее выделение спецкарбидов, содержащих хром, молибден и вольфрам.

Количество ниобия также минимально и необходимо только для образования труднорастворимых карбидов и карбонитридов, препятствующих росту зерна при цементации и нагреве под закалку.

При среднем соотношении молибдена и вольфрама ˜3/1 суммарное их количество может быть в пределах 2-3%. К этому количеству добавляется около 4-5% хрома. Такое количество карбидообразователей обеспечивает возможность дисперсионного твердения до уровня 59-63HRC в цементованном и нитроцементованном состоянии при относительно низкой температуре нагрева под закалку (1050°С). Жесткое ограничение количества ферритообразующих элементов: молибдена, вольфрама, ванадия, хрома позволило уменьшить содержание аустенитообразователей, особенно никеля. В цементуемой стали это чрезвычайно важно, так как правильно подобранный баланс феррито-, и аустенитообразователей в низкоуглеродистой стали, обеспечивающий отсутствие δ-феррита, нарушается при насыщении поверхности аустенитообразователями: углеродом или углеродом и азотом, что приводит к получению в слое слишком устойчивого остаточного аустенита.

Никель уменьшает количество углерода в твердом растворе - аустените при цементации и способствует выделению карбидов по границам зерен с образованием карбидной сетки. Особенно сильно это влияние проявляется при содержании никеля больше 3,3%.

В несколько меньшей степени, но аналогично никелю, действует кобальт, с той лишь разницей, что никель резко снижает температуру начала мартенситного превращения Мн, увеличивая количество остаточного аустенита и его устойчивость в цементованном слое; кобальт, наоборот, повышает температуру Мн. Поэтому присутствие аустенитообразователя - кобальта - более предпочтительно в сравнении с никелем, если бы не резкое увеличение стоимости стали.

Кобальт уменьшает растворимость молибдена в аустените. Поэтому совместное легирование этими элементами требует увеличения температуры нагрева под закалку для растворения карбидов.

Комплекс этих факторов продиктовал необходимость ограничения содержания никеля пределами 2,3-3,3% и кобальта - 1,0-4,0%.

Азот в количестве 0,05-0,1% совместно с углеродом и ниобием образует практически нерастворимые карбонитриды при выбранных технологических нагревах до 1050°С и препятствует росту зерна аустенита.

Церий, лантан и кальций - модификаторы границ зерен, способствующие образованию глобулярных зернограничных выделений.

Таким образом, в результате комплексного легирования при указанном соотношении легирующих элементов в пределах предложенного состава достигаются необходимые характеристики стали для цементуемых и нитроцементуемых деталей, работающих в атмосферных условиях и продуктах сгорания топлива при температурах до 500°С.

Примеры осуществления.

В опытных лабораторных условиях проведено опробование предлагаемого состава стали, выплавленной в вакуумной индукционной печи, в сравнении со сталью прототипа, выплавленной в тех же условиях. Химический состав и механические свойства определялись на стандартном оборудовании и приведены в таблицах 1, 2, 3 и 4, где

примеры 1-3 - предлагаемая сталь;

пример 4 - сталь-прототип.

Химико-термическая и термическая обработка сталей проводилась по следующим режимам:

Предварительная обработка всех сталей: нормализация Т 980°С, охлаждение на воздухе, отпуск Т 680°С, 3 часа, охлаждение на воздухе.

Цементация в промышленной печи газовая при Т=960°С, 10 часов, отпуск при Т=650°С, 3 часа.

Нитроцементация в промышленной печи газовая при Т=980°С, 2 часа, снижение температуры до Т=960°С, выдержка 8 часов, отпуск Т=650°С, 3 часа. Дальнейшая термообработка проводилась по оптимальным режимам для предлагаемой стали - а и прототипа - б:

а. Закалка с Т=1050°С в масле, обработка холодом при Т=-70°С, трехкратный отпуск при Т=530°С по 1 часу.

б. Закалка с Т=1180°С в масле, обработка холодом при Т-70°С, трехкратный отпуск при Т=530°С по 1 часу.

Замер твердости поверхности проводился после каждой операции термообработки.

Испытание коррозионной стойкости цементованных и нитроцементованных образцов проводили в тропической камере и во влажной промышленной атмосфере.

После 50 суток испытаний в тропической камере образцы без сошлифовки поверхности прототипа и предлагаемой стали имели коррозионные поражения в виде пятен до 20% поверхности. Образцы, сошлифованные на глубину 0,1-0,2 мм на сторону, имели отдельные пятна размером 2×2 мм. На образцах, сошлифованных на 0,25 мм на сторону, коррозионные повреждения отсутствуют, только цвет поверхности стал матовым.

При испытаниях в промышленной атмосфере образцов с любой глубиной сошлифовки были обнаружены на поверхности обеих сталей незначительные пятна диаметром ˜1 мм, прозрачные, бурого цвета.

Таким образом, установлено, что коррозионная стойкость цементованного и нитроцементованного слоя предлагаемой стали и прототипа одинакова, а также равна коррозионной стойкости цементованных сталей с низкой теплостойкостью (со структурой мартенсит отпуска) и превосходит коррозионную стойкость азотированного слоя любой современной коррозионно-стойкой стали.

В условиях, имитирующих эксплуатацию, твердость поверхности предлагаемой стали и прототипа в цементованном и нитроцементованном состоянии одинакова и сохраняется после 500 часового нагрева при 300°С и при 400°С, а при 500°С понижается до 58 HRC в цементованном и до 59 HRC в нитроцементованном состояниях. Твердость в сердцевине предлагаемой стали 36-46 HRC остается неизменной. Ударная вязкость также не изменяется. При этом твердость сердцевины прототипа увеличивается на 1-2 единицы HRC со снижением ударной вязкости до 40 Дж/см2.

Предлагаемая сталь превосходит прототип по ударной вязкости и пластичности.

Таким образом, предлагаемая сталь позволит решить ряд проблем, возникших при разработке новых образцов авиационной техники, например применение ее для деталей трения агрегатов, работающих в среде обводненного топлива; узлов поворота направляющих лопаток компрессора газотурбинных двигателей с рабочей температурой до 500°С, механизмов поворота створок реактивного сопла и др., а также в тех горячих узлах, где сегодня применяют азотированную, коррозионно-стойкую сталь, не обладающую достаточной коррозионной стойкостью азотированного слоя.

Таблица 1
Химический состав сталей (мас.%)
№ сталиСSiMnCrNiСоМоVWNbСеLaСаNВFe10,120,10,114,02,31,01,50,10,50,060,0050,0050,0050,05ост.20,150,350,3514,52,82,51,90,150,650,090,0270,0280,0070,08ост.30,190,60,6153,34,02,30,20,80,120,050,050,050,1ост.40,170,50,15163,510,54,00,75-0,05----0,01ост.Таблица 2
Изменение твердости поверхности цементованных (Ц) и нитроцементованных (НЦ) образцов по операциям термообработки, HRC.
№ сталиВариант химико-термической обработкиТвердость HRC после операцийзакалкиобработки холодомОтпусковпервоговтороготретьего1Ц50-5358-595959-60602Ц48-5357-585960603Ц47-5456-595959-60614Ц57-59646061611НЦ48-5157-5959-6062622НЦ47-5157-585961-62623НЦ47-5056-585961624НЦ5863596162

Таблица 3
Механические свойства сталей без цементации
№ сталиσвσ0,2δψтвердостьУдарная вязкость KCU при температурах20°С-40°С-70°СМПа%HRCДж/см2113209801762361209580214201130156042907060316901470196346705040415901340123546454129

Похожие патенты RU2296177C1

название год авторы номер документа
Цементуемая теплостойкая сталь 2020
  • Каблов Евгений Николаевич
  • Громов Валерий Игоревич
  • Курпякова Нина Алексеевна
  • Коробова Елена Николаевна
  • Дорошенко Антон Валерьевич
  • Седов Олег Владимирович
  • Романенко Дмитрий Николаевич
RU2748448C1
СТАЛЬ ДЛЯ ПАРЫ ЗУБЧАТЫХ КОЛЕС 2006
  • Райков Юрий Николаевич
  • Булыгин Юрий Серафимович
  • Дружинина Татьяна Ивановна
RU2333406C2
ВЫСОКОПРОЧНАЯ ДИСПЕРСИОННО-ТВЕРДЕЮЩАЯ СТАЛЬ 2014
  • Каблов Евгений Николаевич
  • Шалькевич Андрей Борисович
  • Уткина Александра Николаевна
  • Громов Валерий Игоревич
  • Банас Игорь Павлович
  • Курпякова Нина Алексеевна
  • Верещагина Алла Андреевна
  • Дорошенко Антон Валерьевич
RU2562184C1
СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННЫХ СТАЛЕЙ 2007
  • Каблов Евгений Николаевич
  • Шалькевич Андрей Борисович
  • Уткина Александра Николаевна
  • Банас Игорь Павлович
  • Верещагина Алла Андреевна
  • Коробова Елена Николаевна
RU2358019C1
ТЕПЛОСТОЙКАЯ ПОДШИПНИКОВАЯ СТАЛЬ 2011
  • Каблов Евгений Николаевич
  • Шалькевич Андрей Борисович
  • Банас Игорь Павлович
  • Громов Валерий Игоревич
  • Уткина Александра Николаевна
  • Коробова Елена Николаевна
  • Верещагина Алла Андреевна
  • Седов Олег Владимирович
RU2447183C1
ЛИОТСКА ( 1972
SU328196A1
КОНСТРУКЦИОННАЯ СТАЛЬ 1993
  • Уткина А.Н.
  • Шалькевич А.Б.
  • Беляков Л.Н.
  • Некрасова Л.С.
  • Тарасенко Л.В.
  • Титов В.И.
  • Борисов М.В.
  • Волчкова В.С.
  • Терехова И.А.
  • Зуев В.В.
  • Жегина И.П.
  • Бабаков Г.А.
  • Шеманская О.В.
  • Аксенов А.С.
  • Второва Л.А.
  • Мелькумов И.Н.
  • Сидорина Т.Н.
  • Каханов А.Д.
RU2040584C1
Способ формирования износостойкого покрытия и коррозионно-стойкого покрытия на поверхности изделий из стали 2021
  • Соколов Александр Григорьевич
  • Бобылев Эдуард Эдуардович
  • Попов Роман Андреевич
RU2768647C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ ПОДШИПНИКОВ ИЗ ТЕПЛОСТОЙКОЙ ПОДШИПНИКОВОЙ СТАЛИ (ВАРИАНТЫ) И ДЕТАЛЬ ПОДШИПНИКА, ПОЛУЧЕННАЯ УКАЗАННЫМ СПОСОБОМ 2021
  • Мокичев Сергей Владимирович
  • Пугачева Татьяна Михайловна
  • Гордеев Андрей Геннадьевич
RU2776341C1
ШТАМПОВЫЙ СПЛАВ 2014
  • Бутыгин Виктор Борисович
  • Демидов Александр Станиславович
RU2550071C1

Реферат патента 2007 года КОРРОЗИОННО-СТОЙКАЯ ДИСПЕРСИОННО-ТВЕРДЕЮЩАЯ СТАЛЬ

Изобретение относится к созданию коррозионно-стойкой, дисперсионно-твердеющей стали, упрочняемой химико-термической обработкой - цементацией или нитроцементацией. Предложенная сталь имеет следующий химический состав, мас.%: углерод 0,12-0,19, кремний 0,1-0,6, марганец 0,1-0,6, хром 14-15, никель 2,3-3,3, кобальт 1,0-4,0, молибден 1,5-2,3, ванадий 0,1-0,2, вольфрам 0,5-0,8, ниобий 0,06-0,12, церий 0,005-0,05, лантан 0,005-0,05, кальций 0,005-0,05, азот 0,05-0,1, железо остальное. Сталь работоспособна в интервале температур от - 70 до 500°С. После 500 часов нагрева при 400°С твердость цементованного слоя (≥59 HRC) и нитроцементованного слоя (≥60 HRC) остается неизменной и снижается на 1 HRC при 500°С. По усталостной прочности (σ-1=840 МПа) в нитроцементованном состоянии превосходит любую коррозионностойкую сталь с цементованным, нитроцементованным и азотированным слоем. 2 з.п. ф-лы, 4 табл.

Формула изобретения RU 2 296 177 C1

1. Коррозионно-стойкая дисперсионно-твердеющая сталь, содержащая углерод, кремний, марганец, хром, никель, кобальт, молибден, ванадий, ниобий, железо, отличающаяся тем, что она дополнительно содержит вольфрам, церий, лантан, кальций и азот при следующем соотношении компонентов, мас.%:

Углерод0,12-0,19Кремний0,1-0,6Марганец0,1-0,6Хром14-15Никель2,3-3,3Кобальт1,0-4,0Молибден1,5-2,3Ванадий0,1-0,2Вольфрам0,5-0,8Ниобий0,06-0,12Церий0,005-0,05Лантан0,005-0,05Кальций0,005-0,05Азот0,05-0,1ЖелезоОстальное

2. Коррозионно-стойкая дисперсионно-твердеющая сталь по п.1, отличающаяся тем, что суммарное содержание молибдена, вольфрама, ванадия, обеспечивающих дисперсионно-карбидное упрочнение цементованного и нитроцементованного слоя, составляет 2,1-3,3%.3. Коррозионно-стойкая дисперсионно-твердеющая сталь по п.1, отличающаяся тем, что суммарное содержание никеля и кобальта составляет 3,3-7,3%.

Документы, цитированные в отчете о поиске Патент 2007 года RU2296177C1

US 5424028 A, 13.06.1995
СТАЛЬ ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТИ И БЕСШОВНЫЕ ТРУБЫ, ВЫПОЛНЕННЫЕ ИЗ НЕЕ 2002
  • Кузнецов В.Ю.
  • Печерица А.А.
  • Кузнецова Е.Я.
  • Лубе И.И.
  • Фролочкин В.В.
  • Лашкуль Н.Н.
  • Уткин Ю.Н.
  • Родионова И.Г.
  • Бакланова О.Н.
  • Быков А.А.
  • Столяров В.И.
  • Реформатская И.И.
  • Порецкий С.В.
  • Рыбкин А.Н.
RU2243284C2
EP 0525331 A, 03.02.1993
JP 2004197149 A, 15.07.2004
Разборный с внутренней печью кипятильник 1922
  • Петухов Г.Г.
SU9A1

RU 2 296 177 C1

Авторы

Каблов Евгений Николаевич

Белякова Валентина Ивановна

Ковалев Игорь Евгеньевич

Верещагина Алла Андреевна

Шалькевич Андрей Борисович

Уткина Александра Николаевна

Коробова Елена Николаевна

Банас Игорь Павлович

Даты

2007-03-27Публикация

2005-08-15Подача