КОНСТРУКЦИОННАЯ СТАЛЬ Российский патент 2007 года по МПК C22C38/32 

Описание патента на изобретение RU2296810C2

Изобретение относится к металлургии, а более конкретно к легированным сталям, которые предназначены для изготовления бронебойных снарядов.

Уровень данной области техники характеризует конструкционная сталь марки 53ХМЮ по ГОСТ 10230-75, которая содержит в мас.%: 0,49-0,55 углерода, 0,17-0,37 кремния, 0,50-0,80 марганца, 1,0-1,4 хрома, 0,15-0,30 молибдена, 0,07-0,15 алюминия, остальное - железо.

Корпуса бронебойных снарядов, изготовленные резанием из прутка, после термообработки закалкой имеют предел прочности σв до 2000 МПа и предел текучести σ02 в пределах 1700-1800 МПа.

Недостатком указанной стали являются ограниченные возможности структуры и состава для повышения прочностных характеристик корпусов бронебойных снарядов, изготовленных из нее, то есть показателей назначения боеприпасов.

Известна конструкционная сталь, описанная в JP 59-123716, С21D 9/08, 8/10, 1984 г., которая по большинству совпадающих признаков выбрана в качестве наиболее близкого аналога предложенной.

Известная конструкционная сталь, предназначенная для изготовления труб, характеризуется улучшением механических свойств за счет пластической деформации в сочетании с термобработкой и содержит следующие компоненты (мас.%): 0,15-0,80 углерод, 0,1-1,0 кремний, 0,3-2,0 марганец, 0,1-3,0 хром, 0,1-1,0 молибден, 0,001-0,100 алюминий, 0,0003-0,0050 бор, 0,01-0,15 титан и железо - остальное (при наличии легирующих добавок ванадия, ниобия и циркония).

Недостатком известной конструкционной стали является то, что не представляется возможным серийное изготовление из нее корпусов бронебойных снарядов из-за низких прочностных свойств на нижнем пределе содержания углерода (0,15-0,46 мас.%), когда сталь имеет неудовлетворительную твердость после закалки, при которой происходит трещинообразование, если содержание углерода находится в диапазоне 0,60-0,80 мас.%.

Количественное содержание компонентов этой стали обеспечивает максимальную твердость материала 52-53 HRC, что ниже технических требований технических по условиям эксплуатации снаряда, имеющего повышенное бронепробивание.

Кроме того, дополнительное содержание в составе стали дорогостоящих ванадия, ниобия и циркония, которые улучшают структуру и измельчают зерно, усложняет промышленную технологию ее изготовления, но при этом бронепробивание снарядов не повышается.

Задачей, на решение которой направлено настоящее изобретение, является улучшение, за счет оптимизации количественного состава, технологичности стали в переработке для серийного изготовления корпусов бронебойных снарядов, имеющих повышенные показатели назначения.

Требуемый технический результат достигается тем, что в известной конструкционной стали, содержащей железо, углерод, кремний, марганец, хром, молибден, алюминий, титан и бор, компоненты содержатся в следующем соотношении (мас.%):

углерод0,46-0,60кремний0,17-0,37марганец0,50-0,80хром0,80-2,00молибден0,15-0,30алюминийболее 0,1-0,15титан0,05-0,10бор0,001 - менее 0,003 или более 0,005-0,006железоостальное

Отличительные признаки обеспечили повышение прочностных характеристик корпусов бронебойных снарядов из предложенной стали до требований чертежа и технических условий Заказчика после упрочняющей термообработки (закалки и отпуска), гарантированно во всем диапазоне количественного содержания ее структурных компонентов, а также улучшена технологичность ее серийного производства и механической обработки резанием.

При содержании углерода ниже 0,46 мас.% не достигается заданный уровень прочности материала после закалки, что снижает бронепробивание снарядов из новой стали.

При содержании углерода выше 0,60 мас.% в материале образуются закалочные трещины, снижающие механические характеристики стали.

Уменьшение доли содержания кремния обеспечило снижение твердости и прочности феррита в сплаве, что в итоге улучшает ее обрабатываемость резанием.

Максимальное содержание марганца в стали ограничено 0,80 мас.%, потому что при более высоком содержании (в диапазоне 0,80-1,50 мас.%) резко ухудшаются условия резания, вызывая повышенный расход дорогостоящего инструмента.

Минимальное содержание марганца 0,50 мас.% обеспечивает полное раскисление стали при выплавке.

Хром введен в оптимальном для промышленной технологии выплавки стали диапазоне содержания.

При этом содержание хрома ниже 0,80 мас.% не обеспечивает сквозного прокаливания монолитных корпусов снарядов, а при содержании хрома более 2,00 мас.% образуются трудно растворимые карбиды, охрупчивающие сталь.

Минимальное содержание молибдена выбрано в виде нижнего технологического предела 0,15 мас.%, меньше которого в стали при закалке образуются продукты диффузионного распада аустенита (тростит и сорбит), прочность которых уступает прочности мартенсита, в результате чего не обеспечивается заданный уровень прочностных характеристик и требуемое бронепробивание снарядов.

Повышение содержания молибдена более 0,30 мас.% не целесообразно, так как не улучшает прочностных характеристик стали.

Содержание алюминия в пределах более 0,1-0,15 мас.% определено полным раскислением стали для повышения условного предела текучести и увеличения прочности бронебойных снарядов, что не обеспечивается в известном аналоге при содержании алюминия в диапазоне 0,001-0,1 мас.%.

Для расширения технологических возможностей термообработки стали содержание в ней бора оптимизировано в диапазоне менее 0,001-0,003 мас.% или более 0,005-0,006 мас.%, когда он полностью растворяется в твердом растворе без образования соединений, охрупчивающих сталь.

При содержании бора менее 0,001 мас.% не обеспечивается сквозная прокаливаемость стали, а при содержании бора более 0,006 мас.% образуются бориды железа, ухудшающие технологичность производства стали, которая охрупчивается после термообработки.

Содержание титана, необходимой технологической добавки для связывания азота, предотвращающей перевод бора в нитриды, расширено в диапазоне 0,05-0,10 мас.%.

При содержании титана менее нижнего предела оптимизированного для промышленной технологии диапазона не весь азот связывается, что снижает эффективность действия бора на прокаливаемость монолитных корпусов снарядов, уменьшая их прочность.

При введении в твердый раствор титана более 0,10 мас.% образуются крупные частицы нитридов титана, снижающие пластичность стали.

Содержание структурных компонентов в стали рассчитано по математической модели планирования эксперимента и проверено на опытных плавках при изготовлении опытной партии бронебойных снарядов, которые характеризуются следующими прочностными свойствами материала, полученными после закалки и отпуска полуфабрикатов: предел прочности (σв)=2200-2400 МПа, а предел текучести (σ02)=1850-2000 МПа, что на 8-10% выше, чем у снарядов из известной стали в термообрабатываемом диапазоне содержания углерода. При этом соответственно увеличилась бронепробивание этих снарядов, твердость которых соответствует чертежным значениям 54-58 HRC.

Следовательно, каждый существенный признак необходим, а их совокупность в устойчивой взаимосвязи являются достаточными для достижения новизны качества, не присущей признакам в разобщенности, то есть техническая задача в изобретении решена не суммой эффектов, а новым эффектом суммы признаков. Изобретение иллюстрируется примерами выполнения стали для корпусов бронебойных снарядов, содержание компонентов которой варьировалось в пределах заявленных диапазонов и за граничными значениями.

Характерные составы стали приведены в таблице.

Таблица.состав компонентсодержание, мас.%123456углерод0,600,450,600,600,600,55марганец0,600,450,800,800,900,80кремний0,300,200,150,400,300,35хром0,782,000,802,002,101,00молибден0,150,300,200,300,200,20алюминий0,150,150,100,150,150,10титан0,080,010,100,120,100,05бор0,00080,0020,0060,0030,0050,006железоостальноеПрочностные характеристикиσв, МПа215021002180215022002200σ02, МПа175017001650175016501850

Из таблицы следует экспериментальное подтверждение, что сталь состава №6 с оптимизированным долевым содержанием компонентов имеет технологические свойства при изготовлении корпусов бронебойных снарядов с заданными механическими характеристиками, обеспечивающими эффективность применения по назначению.

Бронепробивание снарядов из стали по изобретению, сравнительно с прототипом, повысилась на 23%.

При выходе за установленные пределы диапазонов содержания одного или нескольких компонентов в стали выбранного качественного состава (№№1-5) не достигаются показатели назначения изделий и/или технологические свойства стали неприемлемы для практического использования в серийном производстве боеприпасов.

Технологические свойства составов.

Состав 1 - повышенный процент брака при закалке.

Состав 2 - недостаточные твердость и прочность.

Состав 3 - охрупчивание стали, снижается предел текучести.

Состав 4 - ухудшается механическая обрабатываемость.

Состав 5 - сталь охрупчивается после закалки, ухудшается механическая обрабатываемость резанием.

Состав 6 - соответствует требованиям чертежа и условиям эксплуатации бронебойных снарядов.

Проведенный сопоставительный анализ предложенного технического решения с выявленными аналогами уровня техники, из которого изобретение явным образом не следует для специалиста по боеприпасам, показал, что оно не известно, а с учетом возможности практической реализации стали в условиях серийного производства бронебойных малокалиберных снарядов можно сделать вывод о соответствии критериям патентоспособности.

Похожие патенты RU2296810C2

название год авторы номер документа
СТАЛЬ ДЛЯ ЗВЕНЬЕВ ПАТРОННОЙ ЛЕНТЫ 2005
  • Гулин Олег Александрович
  • Липченко Юрий Николаевич
  • Сидоров Юрий Михайлович
  • Чижевский Олег Тимофеевич
RU2291219C2
БУРИЛЬНАЯ ТРУБА ВЫСОКОПРОЧНАЯ 2013
  • Грехов Александр Игоревич
  • Овчинников Дмитрий Владимирович
  • Тихонцева Надежда Тахировна
  • Жукова Светлана Юльевна
  • Пышминцев Игорь Юрьевич
  • Мануйлова Ирина Ивановна
  • Софрыгина Ольга Андреевна
  • Битюков Сергей Михайлович
RU2552796C2
БРОНЕВАЯ СТАЛЬ 2006
  • Зверяев Николай Филиппович
  • Заря Николай Всеволодович
  • Стегалова Людмила Павловна
  • Гладышев Сергей Алексеевич
  • Гавзе Аркадий Львович
RU2341583C2
ТРУБА ИЗ СТАЛИ, СТОЙКОЙ К КОРРОЗИИ В СРЕДЕ УГЛЕВОДОРОДА И УГЛЕКИСЛОГО ГАЗА 2013
  • Грехов Александр Игоревич
  • Овчинников Дмитрий Владимирович
  • Тихонцева Надежда Тахировна
  • Жукова Светлана Юльевна
  • Пышминцев Игорь Юрьевич
  • Мануйлова Ирина Ивановна
  • Софрыгина Ольга Андреевна
  • Битюков Сергей Михайлович
RU2564191C2
СПОСОБ ПРОИЗВОДСТВА ПРОКАТА ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ ДЛЯ ИЗГОТОВЛЕНИЯ ИЗНОСОСТОЙКИХ ДЕТАЛЕЙ 2018
  • Филатов Николай Владимирович
  • Вархалева Татьяна Сергеевна
  • Иваненко Алексей Викторович
  • Белов Георгий Анатольевич
RU2678854C1
ВЫСОКОПРОЧНАЯ ИЗНОСОСТОЙКАЯ СТАЛЬ ДЛЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ МАШИН (ВАРИАНТЫ) 2015
  • Хлусова Елена Игоревна
  • Голосиенко Сергей Анатольевич
  • Рябов Вячеслав Викторович
  • Сошина Татьяна Викторовна
  • Зисман Александр Абрамович
  • Орлов Виктор Валерьевич
  • Беляев Виталий Анатольевич
  • Шумилов Евгений Алексеевич
RU2606825C1
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОПРОЧНОЙ ЛИСТОВОЙ СТАЛИ 2015
  • Салганик Виктор Матвеевич
  • Полецков Павел Петрович
  • Гущина Марина Сергеевна
RU2593810C1
СПОСОБ ПРОИЗВОДСТВА СВЕРХВЫСОКОПРОЧНОЙ ЛИСТОВОЙ СТАЛИ 2014
  • Чукин Михаил Витальевич
  • Салганик Виктор Матвеевич
  • Полецков Павел Петрович
  • Гущина Марина Сергеевна
RU2583229C9
ЛЕГИРОВАННАЯ КОНСТРУКЦИОННАЯ СТАЛЬ ПРЕИМУЩЕСТВЕННО ДЛЯ ХОЛОДНОЙ ОБЪЕМНОЙ ШТАМПОВКИ 2007
  • Ососков Александр Павлович
  • Перевертов Анатолий Владимирович
  • Ососков Михаил Александрович
RU2365664C1
НИЗКОЛЕГИРОВАННАЯ БОРСОДЕРЖАЩАЯ СТАЛЬ ПОВЫШЕННОЙ ОБРАБАТЫВАЕМОСТИ 2008
  • Шляхов Николай Александрович
  • Потапов Иван Васильевич
  • Фомин Вячеслав Иванович
  • Гончаров Виктор Витальевич
  • Маликов Иван Тихонович
RU2363753C1

Реферат патента 2007 года КОНСТРУКЦИОННАЯ СТАЛЬ

Изобретение относится к металлургии, а более конкретно к легированным сталям для корпусов бронебойных снарядов. Предложена конструкционная сталь, содержащая, мас.%: углерод 0,46-0,60, кремний 0,17-0,37, марганец 0,50-0,80, хром 0,80-2,00, молибден 0,15-0,30, алюминий более 0,1-0,15, титан 0,05-0,10, бор 0,001 - менее 0,003 или более 0,005-0,006, железо - остальное. Предложенное техническое решение позволило упрочнить сталь до уровня показателей, обусловленных техническими требованиями эксплуатации по бронепробиванию, при этом обеспечено повышение технологичности изготовления корпусов снарядов. 1 табл.

Формула изобретения RU 2 296 810 C2

Конструкционная сталь, содержащая железо, углерод, кремний, марганец, хром, молибден, алюминий, титан и бор, отличающаяся тем, что она содержит компоненты при следующем соотношении, мас.%:

Углерод0,46-0,60Кремний0,17-0,37Марганец0,50-0,80Хром0,80-2,00Молибден0,15-0,30АлюминийБолее 0,1-0,15Титан0,05-0,10Бор 0,001- менее 0,003

или более0,005-0,006

ЖелезоОстальное

Документы, цитированные в отчете о поиске Патент 2007 года RU2296810C2

Устройство для охлаждения водою паров жидкостей, кипящих выше воды, в применении к разделению смесей жидкостей при перегонке с дефлегматором 1915
  • Круповес М.О.
SU59A1
Способ и приспособление для нагревания хлебопекарных камер 1923
  • Иссерлис И.Л.
SU2003A1
Сталь 1976
  • Алоис Шустек
  • Милна Воцел
SU1188221A1
Способ получения молочной кислоты 1922
  • Шапошников В.Н.
SU60A1
US 5108518 A, 28.04.1992.

RU 2 296 810 C2

Авторы

Гулин Олег Александрович

Липченко Юрий Николаевич

Сидоров Юрий Михайлович

Чижевский Олег Тимофеевич

Даты

2007-04-10Публикация

2005-03-21Подача