Изобретение относится к области керамических материалов для медицины, а именно травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии, и может использоваться для изготовления материалов, предназначенных для заполнения костных дефектов.
Применение кальций фосфатной керамики в качестве материала для имплантатов, несущих механические нагрузки, часто невозможно из-за недостаточных прочностных характеристик и трещиностойкости. Поскольку естественная костная ткань является композиционным материалом, состоящим из гидроксиапатита, коллагена и других белков, то значительные перспективы для повышения механических свойств кальций фосфатной керамики, предназначенной для изготовления костных имплантатов, имеет принцип формирования композиционных структур.
Известны работы (1-5), направленные на создание композитов гидроксиапатит-биополимер, которые по составу схожи с естественной костью. Композиты могут быть изготовлены посредством смешивания порошка гидроксиапатита с раствором коллагена и последующим затвердеванием смеси под УФ-излучением или прессованием смеси гидроксиапатит-коллаген при температуре 40°С и давлении 200 МПа. Однако полученные материалы имеют низкие прочностные характеристики, например прочность при растяжении равна 6,5 МПа, а модуль Юнга 2 ГПа. Прочностные свойства большинства композитов гидроксиапатит-коллаген неудовлетворительны. В то же время эти материалы имеют более высокую биоактивность, нежели гидроксиапатит и биополимер-коллаген. Используя коллаген, можно создавать материалы с контролируемой резорбируемостью. Коллаген или желатин часто используют как материал-носитель лекарственных средств пролонгированного действия (5).
Известен метод, основанный на инфильтрации водного раствора мономера ε-капролактон в пористый апатитовый цемент под высоким вакуумом с последующей его in situ полимеризацией при температуре 120 или 80°С и выдержкой 10 или 60 дней соответственно. Способ позволяет повысить прочность при растяжении пористого апатитового цемента лишь максимально в 3,7 раза. Недостатком способа является также длительность технологического процесса (6).
Технический результат предлагаемого изобретения - повышение прочности пористой спеченной керамики фосфата кальция в 5-6 раз и сокращение длительности технологического процесса упрочнения керамики.
Для достижения технического результата предлагается осуществлять инфильтрацию в пористую спеченную кальций фосфатную керамическую матрицу с соотношением Ca/P=1,5 (трехкальциевый фосфат) до 1,67 (гидроксиапатит) водных растворов коллагена, желатина и поливинилового спирта концентрацией от 4 до 10% в вакууме от 0,1 до 3,0 Па в течение 10 и 30 мин при температуре раствора от 20 до 75°C с последующей сушкой композиции при комнатной температуре 24 ч.
Пример 1. Образцы пористой керамики из гидроксиапатита (Ca/P=1,67) подвергали инфильтрации в 1, 4, 7 и 10%-ных растворах коллагена в дистиллированной воде под вакуумом при остаточном давлении 1,33 Па в течение 10 и 30 мин. Температура раствора варьировалась от 25 до 75°С. Затем полученные образцы извлекались из вакуум-сосуда, удаляли с их поверхности избыточную жидкость влажной хлопчатобумажной тканью и сушили на воздухе 20 часов при комнатной температуре.
Пример 2. Образцы пористой керамики из трехкальциевого фосфата (Ca/P=1,5) подвергали инфильтрации в 1, 4, 7 и 10%-ных растворах желатина в дистиллированной воде под вакуумом при остаточном давлении 1,33 Па в течение 10 и 30 мин. Температура раствора варьировалась от 25 до 75°С. Затем полученные образцы извлекались из вакуум-сосуда, удаляли с их поверхности избыточную жидкость влажной хлопчатобумажной тканью и сушили на воздухе 24 часа при комнатной температуре.
Пример 3. Образцы пористой керамики из гидроксиапатита (Ca/P=1,67) подвергали инфильтрации в 1, 4, 7 и 10%-ных растворах поливинилового спирта в дистиллированной воде под вакуумом при остаточном давлении 1,33 Па в течение 10 и 30 мин. Температура раствора варьировалась от 25 до 75°С. Затем полученные образцы извлекались из вакуум-сосуда, удаляли с их поверхности избыточную жидкость влажной хлопчатобумажной тканью и сушили на воздухе 24 часа при комнатной температуре.
В таблицах 1, 2 и 3 приведены свойства композиционных материалов, полученных при различных режимах процесса. Инфильтрация полимера в керамику приводит к повышению прочности до 6 раз. Эффект повышения прочности зависит от свойств полимера, а также от технологических условий эксперимента. При уровне вакуума менее 0,1 Па резко снижается пористость матрицы, а при уровне более 3,0 Па не происходит существенного упрочнения материала. При концентрации раствора биополимера менее 4% не достигается повышение прочности, а при концентрации более 10% инфильтрация полимера затруднена. При температуре раствора ниже 25°С процесс пропитки не реализуем из-за быстрого твердения раствора, а при температуре выше 75°С происходит частичное разложение биополимера. Длительность сушки 24 часа вполне достаточна для удаления воды из композиционного материала.
Состав и свойства материалов
Состав и свойства материалов
Состав и свойства материалов
Источники информации
1. Bakos D., Soldan M., Hemandez-Fuentes I. Hydroxyapatite-collagen-hyaluronic acid composite // Biomaterials. 1999. V.20. P.191-195.
2. Sotome S., Uemura Т., Kikuchi M., Chen J., Itoh S., Tanaka J., Tateishi Т., Shinomiya K. Synthesis and in vivo evaluation of a novel hydroxyapatite/collagen-alginate as a bone filler and a drug delivery carrier of a bone morphogenetic protein // Mater. Sci. Eng. C. 2004. V.24, N3. P.341-347.
3. Zhang L., Feng X., Liu H., Qian D., Zhang L., Yu X., Cui F. Hydroxyapatite/collagen composite materials formation in simulated body fluid environment // Mater. Lett. 2004. V.58, №5. P.719-722.
4. Kikuchi M., Matsumoto H.N., Yamada Т., Koyama Y., Takakuda K., Tanaka J. Glutaraldehyde cross-linked hydroxyapatite/collagen self-organized nanocomposites // Biomaterials. 2004. V.25, N1. P.63-69.
5. Suchanek W., Yoshimura M. Processing and properties of HA-based biomaterials for use as hard tissue replacement implants // J.Mater. Res. Soc. 1998. V.13, №1. P.94-103.
6. Walsh D., Furuzono Т., Tanaka J. Preparation of porous composite implant materials by in situ polymerization of porous apatite containing ε-caprolactone or methylmethacrylate. Biomaterials. 2001. V.22, N11. P.1205-1212.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ УПРОЧНЕНИЯ ПОРИСТОЙ КАЛЬЦИЙФОСФАТНОЙ КЕРАМИКИ | 2012 |
|
RU2494076C1 |
Способ получения гидроксиапатит-коллагенового композита | 2016 |
|
RU2631594C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРИРОВАННОГО КАЛЬЦИЙ-ФОСФАТНОГО ПОКРЫТИЯ ДЛЯ МЕДИЦИНСКИХ ИМПЛАНТАТОВ | 2013 |
|
RU2523410C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ГИДРОКСИАПАТИТОВОЙ КЕРАМИКИ С БИМОДАЛЬНЫМ РАСПРЕДЕЛЕНИЕМ ПОР | 2005 |
|
RU2303580C2 |
Способ получения композиционных биоматериалов хитозан/гидроксиапатит | 2020 |
|
RU2748799C1 |
СПОСОБ ПОЛУЧЕНИЯ МИНЕРАЛИЗОВАННЫХ КОМПОЗИТНЫХ МИКРОСКАФФОЛДОВ ДЛЯ РЕГЕНЕРАЦИИ КОСТНОЙ ТКАНИ | 2016 |
|
RU2660558C2 |
Способ получения низкотемпературного биорезорбируемого композиционного материала на основе гидроксиапатита, армированного частицами магния с помощью электроимпульсного метода компактирования для применения в качестве имплантата при остеосинтезе | 2021 |
|
RU2760096C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО СКЭФФОЛДА ДЛЯ ВОССТАНОВЛЕНИЯ ДЕФЕКТОВ КОСТНОЙ ТКАНИ | 2016 |
|
RU2624854C1 |
ХИРУРГИЧЕСКИЙ МАТЕРИАЛ (ВАРИАНТЫ) | 2010 |
|
RU2433836C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОРИСТЫХ КЕРАМИЧЕСКИХ ГРАНУЛ ФОСФАТОВ КАЛЬЦИЯ | 2005 |
|
RU2299869C1 |
Изобретение относится к области медицины и касается производства материалов, используемых в травматологии, ортопедии, челюстно-лицевой хирургии и хирургической стоматологии. Способ получения композиционного материала для заполнения костных дефектов заключается в инфильтрации в пористую керамическую матрицу из кальций фосфатной керамики с соотношением Ca/P от 1,5 до 1,67 раствора коллагена, или желатина, или поливинилового спирта концентрацией от 4 до 10% под вакуумом от 0,1 до 3,0 Па с выдержкой от 10 до 30 мин при температуре раствора от 20 до 75°C с последующей сушкой композиции в течение до 24 часов. Предлагаемый способ позволяет повысить прочность керамики в 5-6 раз, а также сокращается длительность технологического процесса. 3 табл.
Способ получения композиционного материала для заполнения костных дефектов, заключающийся в инфильтрации в пористую керамическую матрицу из кальций фосфатной керамики с соотношением Ca:P от 1,5 до 1,67 раствора коллагена или желатина или поливинилового спирта концентрацией от 4 до 10% под вакуумом от 0,1 до 3,0 Па с выдержкой от 10 до 30 мин при температуре раствора от 20 до 75°C с последующей сушкой композиции в течение до 24 ч.
WALSH D., FURUZONO Т., TANAKA J | |||
Preparation of porous composite implant | |||
materials by in siti polimerization of porous apatite containing caprolactone or methylmehacrylate | |||
Biomaterials | |||
Перекатываемый затвор для водоемов | 1922 |
|
SU2001A1 |
Способ получения пористой биокерамики | 2002 |
|
RU2225380C1 |
ДЮБЕЛЬ | 1997 |
|
RU2114329C1 |
СПОСОБ ПОЛУЧЕНИЯ ИМПЛАНТАЦИОННОГО МАТЕРИАЛА СИНТЕТИЧЕСКОГО АНАЛОГА КОСТНОГО МАТРИКСА | 1995 |
|
RU2115437C1 |
СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА ДЛЯ ОСТЕОПЛАСТИКИ И ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ МАТЕРИАЛ | 1992 |
|
RU2104703C1 |
Авторы
Даты
2007-04-20—Публикация
2005-10-12—Подача