СПОСОБ ИЗГОТОВЛЕНИЯ ПОРИСТЫХ КЕРАМИЧЕСКИХ ГРАНУЛ ФОСФАТОВ КАЛЬЦИЯ Российский патент 2007 года по МПК C04B35/447 C04B35/626 A61L27/12 

Описание патента на изобретение RU2299869C1

Изобретение относится к области керамических материалов для медицины, а именно травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии, и может использоваться для изготовления материалов, предназначенных для заполнения костных дефектов.

Керамические гранулы могут быть изготовлены разными способами, включая дробление блоков с последующей обкаткой, распылительной сушкой, закалкой в жидкости, гидротермальным синтезом, с получением гранул нерегулярной или близкой к сферической геометрии (1-4). Последняя предпочтительна как для предотвращения воспалительных реакций организма, так и для процесса остеоинтеграции (5, 6).

Известен метод, основанный на сфероидизации жидких капель за счет сил поверхностного натяжения, реализуемый при использовании смесей суспензии гидроксиапатита в растворе связующего (хитозана) и жидкого парафина (5). Способ позволяет получать пористые гранулы сферической формы, открытые поры в которых образуются за счет выжигания связки. Однако недостатки способа связаны с использованием расплавленного парафина и низкой пористостью получаемого материала.

Наиболее близким техническим решением является способ получения гранул на основе гидроксиапатита, заключающийся в смешивании гидроксида кальция и монозамещенного фосфата кальция, моногидрата в мольном соотношении Са/Р=1,67, добавлении к этой смеси водного раствора, содержащего гидрогель с концентрацией полимера 0,01-10,0 мас.%, перемешивании данных веществ при температуре 20-41°С при нейтральном значении рН6,8-7,2 с последующем фильтрованием и высушиванием осажденного конечного продукта в виде гранул при температуре 105-160°С (7).

Технический результат предлагаемого изобретения - способ изготовления сферических пористых керамических гранул с регулируемым размером и открытой пористостью от 20 до 80 об.%, размером от 50 до более чем 2000 мкм, состава от трехкальциевого фосфата (Са/Р=1,5) до гидроксиапатита (Са/Р=1,67).

Для достижения технического результата предлагается суспензионная технология, основанная на принципе несмешивающихся жидкостей с последующей термической обработкой. Порошок фосфата кальция от трехкальциевого фосфата до гидроксиапатита смешивают с раствором желатина в дистиллированной воде, который способствует сцеплению частиц порошка, при температуре раствора в интервале от 15 до 39°С. Концентрация суспензии варьируется от 0,5 до 3,0 мл 10%-ного раствора желатина на 1 г. порошка фосфата кальция. После этого суспензию вводят в диспергирующую среду, в качестве которой используется растительное масло, перемешивая лопастной мешалкой. Скорость перемешивания варьируется в пределах от 100 до 1500 об/мин, длительность перемешивания - от 5 до 60 мин. После отстаивания в течение 5 мин осадок в виде сферических гранул отфильтровывают, отмывают от масла этиловым спиртом, сушат и подвергают термической обработке при температурах от 900 до 1250°С с выдержкой при этих температурах от 30 до 300 мин.

Изобретение иллюстрируется следующими примерами.

Пример 1. 5 г порошка фосфата кальция с Са/Р=1,67 смешивают с 10%-ным раствором желатина в дистиллированной воде при температуре 20°С в соотношении порошок-жидкость 1 г/1,5 мл. Суспензию помещают в растительное масло при комнатной температуре, которое перемешивается лопастной мешалкой со скоростью 200 об/мин в течение 15 мин. После отстаивания, фильтрования, промывки и сушки гранулы подвергают термической обработке при температуре 1200°С с выдержкой 60 мин. Обожженные образцы имеют пористую структуру с содержанием открытых пор 39-41%, размером пор от 1 до 10 мкм. Размер получаемых гранул находится в пределах от 1000 до 10000 мкм.

Пример 2. 5 г. порошка фосфата кальция с Са/Р=1,60 смешивают с 10%-ным раствором желатина в дистиллированной воде при температуре 25°С в соотношении порошок-жидкость 1 г/2 мл. Суспензию помещают в растительное масло при комнатной температуре, которое перемешивается лопастной мешалкой со скоростью 500 об/мин в течение 15 мин. После отстаивания, фильтрования, промывки и сушки гранулы подвергают термической обработке при температуре 1200°С с выдержкой 60 мин. Обожженные образцы имеют пористую структуру с содержанием открытых пор 53-55%, размером пор от 1 до 10 мкм. Размер получаемых гранул находится в пределах от 600 до 7000 мкм.

Пример 3. 5 г порошка фосфата кальция с Са/Р=1,58 смешивают с 10%-ным раствором желатина в дистиллированной воде при температуре 35°С в соотношении порошок-жидкость 1 г/2,5 мл. Суспензию помещают в растительное масло при комнатной температуре, которое перемешивается лопастной мешалкой со скоростью 1000 об/мин в течение 30 мин. После отстаивания, фильтрования, промывки и сушки гранулы подвергают термической обработке при температуре 1000°С с выдержкой 60 мин. Обожженные образцы имеют пористую структуру с содержанием открытых пор 70-72%, размером пор от 0,5 до 15 мкм. Размер получаемых гранул находится в пределах от 50 до 900 мкм.

Пример 4. 5 г порошка фосфата кальция с Са/Р=1,50 смешивают с 10%-ным раствором желатина в дистиллированной воде при температуре 39°С в соотношении порошок-жидкость 1 г/3 мл. Суспензию помещают в растительное масло при комнатной температуре, которое перемешивается лопастной мешалкой со скоростью 1500 об/мин в течение 60 мин. После отстаивания, фильтрования, промывки и сушки гранулы подвергают термической обработке при температуре 900°С с выдержкой 60 мин. Обожженные образцы имеют пористую структуру с содержанием открытых пор 79-81%, размером пор от 0,5 до 15 мкм. Размер получаемых гранул находится в пределах от 50 до 400 мкм.

В таблице приведены характеристики гранул фосфатов кальция, получаемые при различных режимах проведения процесса. При температуре суспензии и дисперсионной среды ниже 15°С процесс гранулирования не реализуем из-за быстрого твердения суспензии, а при температуре выше 39°С - средний размер получаемых гранул составляет менее 50 мкм. При скорости перемешивания менее 100 об/мин происходит агломерирование гранул, а при скорости более 1500 об/мин - гранулы имеют средний размер менее 50 мкм. При температуре термообработки ниже 900°С не происходит спекания порошка фосфата кальция, а при температуре выше 1250°С резко снижается пористость.

Таблица
Характеристики гранул фосфатов кальция, получаемые при различных режимах проведения процесса.
Температура раствора, °СКонцентрация суспензии, мл/гСкорость перемешивания, об/минДлительность перемешивания, минТемпература термообработки, °СВремя выдержки, минРазмер гранул, мкмОткрытая пористость, %110120020----210250040----3103150060----415120020950301500-1900365152500401100120900-13005361531500601250300500-90084720120020950301200-16003682025040----92031500601250300400-80087102512002095030800-12003911252500401100120400-80055122531500601250300200-50083133012002095030800-12003314302500401100120300-70054153031500601250300100-50084163512002095030300-7003317352500401100120100-50052183531500601250300100-200871939120040950120200-6003720393150040125012050-1008521451500601000120менее 50372225250040850120--23252500401300120400-80023

Источники информации, принятые во внимание

1. Williams D.F. The science and applications of biomaterials // Advances in Materials Technology Monitor. 1994. V.1, N2. P.1-38.

2. Орловский В.П., Суханова Г.Е., Ежова Ж.А., Родичева Г.В. Гидроксиапатитовая керамика // Ж. Всесоюзного хим. об-ва им. Д.И.Менделеева. 1991. Т.36, №6. С.683.

3. Hench L.L. Bioceramics and the future // Ceramics and Society. Ed. P.Vincenzini. Techna, Faenza, 1995. P.101-120.

4. De Bruijn J.D. Calcium phosphate biomaterials: bone-bonding and biodegradation properties. Thesis Leiden. - Haveka B.V., Alblasserdam, 1993. - 172 p.

5. Paul W., Sharma C.P. Development of porous spherical hydroxyapatite granules: application towards protein delivery // J.Mater. ScL: Mater. Med. 1999. V.10, N7. P.383-388.

6. Weinlander M., Plenk H., Jr., Adar F. and Holmes R. In: Bioceramics and the human body, Eds. A.Ravaglioli and A.Krajewski. Elsevier, London, 1992. P.317.

7. Крылова Е.А. Способ получения гидроксиапатитовых полисахаридных гранул. Патент RU 2235061, 2004.

Похожие патенты RU2299869C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТЫХ КЕРАМИЧЕСКИХ ГРАНУЛ НА ОСНОВЕ КАРБОНАТА КАЛЬЦИЯ И ГИДРОКСИАПАТИТА И/ИЛИ КАРБОНАТГИДРОКСИАПАТИТА ДЛЯ ЗАПОЛНЕНИЯ КОСТНЫХ ДЕФЕКТОВ ПРИ РЕКОНСТРУКТИВНО-ПЛАСТИЧЕСКИХ ОПЕРАЦИЯХ 2014
  • Смирнов Валерий Вячеславович
  • Гольдберг Маргарита Александровна
  • Комлев Владимир Сергеевич
  • Баринов Сергей Миронович
RU2555348C1
Способ получения пористых сферических гранул на основе гидроксиапатита, волластонита и желатина 2022
  • Солоненко Анна Петровна
  • Шевченко Алиса Евгеньевна
  • Чиканова Екатерина Сергеевна
  • Бердинская Мария Владимировна
  • Рождественский Андрей Александрович
RU2785143C1
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО НАНОКРИСТАЛЛИЧЕСКОГО ГИДРОКСИЛАПАТИТА 2014
  • Волковняк Наталья Николаевна
  • Храмов Георгий Викторович
  • Иванов Максим Борисович
  • Гребцова Елена Александровна
RU2605296C2
Способ изготовления гранул из биоактивного материала на основе гидроксиапатита или фторапатита 2021
  • Богданова Екатерина Анатольевна
  • Нефедова Ксения Валерьевна
  • Скачков Владимир Михайлович
RU2753529C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТЫХ ГИДРОКСИАПАТИТОВЫХ ГРАНУЛ 2009
  • Молчунова Лилия Михайловна
  • Кульков Сергей Николаевич
  • Буякова Светлана Петровна
RU2395476C1
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛ КАРБОНАТГИДРОКСИЛАПАТИТА В МАТРИЦЕ ЖЕЛАТИНА 2014
  • Измайлов Ринат Рашидович
  • Голованова Ольга Александровна
RU2552756C1
Способ изготовления пористых нанокомпозитных кремниевых гранул 2019
  • Шилова Ольга Алексеевна
  • Хамова Тамара Владимировна
  • Гордеев Сергей Константинович
  • Кручинина Ирина Юрьевна
  • Шевченко Владимир Ярославович
RU2717521C1
Способ получения гранул Mg-гидроксилапатит-хитозан 2021
  • Голованова Ольга Александровна
RU2790908C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОЙ КЕРАМИКИ ИЗ ФОСФАТОВ КАЛЬЦИЯ ДЛЯ ЛЕЧЕНИЯ ДЕФЕКТОВ КОСТНОЙ ТКАНИ 2015
  • Баринов Сергей Миронович
  • Фадеева Инна Вилоровна
  • Фомин Александр Сергеевич
  • Петракова Наталия Валерьевна
RU2599524C1
СПОСОБ ИЗГОТОВЛЕНИЯ ГИДРОКСИАПАТИТОВОЙ КЕРАМИКИ С БИМОДАЛЬНЫМ РАСПРЕДЕЛЕНИЕМ ПОР 2005
  • Комлев Владимир Сергеевич
  • Баринов Сергей Миронович
RU2303580C2

Реферат патента 2007 года СПОСОБ ИЗГОТОВЛЕНИЯ ПОРИСТЫХ КЕРАМИЧЕСКИХ ГРАНУЛ ФОСФАТОВ КАЛЬЦИЯ

Пористые керамические гранулы на основе гидроксиапатита (ГА) могут быть использованы для заполнения костных дефектов в травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии. Технический результат изобретения - изготовление пористых сферических гранул с регулируемым размером и открытой пористостью 20-80 об.%. Способ изготовления гранул ГА заключается в предварительном синтезировании порошка фосфата кальция с соотношением Са/Р от 1,5 до 1,67, приготовлении суспензии с 10-%ным раствором желатина в соотношении 0,5-3 мл раствора желатина на 1 г порошка при температуре раствора 10-39°С. Суспензию ГА в водном растворе желатина диспергировали в нейтральной жидкой среде растительного масла, перемешивали смесь лопастной мешалкой со скоростью вращения 100-1500 об/мин. Под действием сил поверхностного натяжения образовывались гранулы сферической формы, которые промывали, сушили и подвергали термической обработке при температуре 900-1250°С. 1 табл.

Формула изобретения RU 2 299 869 C1

Способ изготовления пористых сферических гранул фосфата кальция, заключающийся в приготовлении суспензии предварительно синтезированного порошка фосфата кальция с соотношением Са/Р от 1,5 до 1,67 с 10%-ным раствором желатина в соотношении от 0,5 до 3,0 мл раствора желатина на 1 г порошка при температуре раствора от 10 до 39°С с получением суспензии порошка в растворе желатина, добавление этой суспензии в растительное масло, перемешивание смеси лопастной мешалкой со скоростью ее вращения от 100 до 1500 об/мин с последующей промывкой гранул и их термической обработкой при температуре от 900 до 1250°С.

Документы, цитированные в отчете о поиске Патент 2007 года RU2299869C1

СПОСОБ ПОЛУЧЕНИЯ МИКРОГРАНУЛ НА ОСНОВЕ ГИДРОКСИЛАПАТИТА КАЛЬЦИЯ 2002
  • Крылова Е.А.
  • Крылов С.Е.
  • Иванов А.А.
RU2235061C2
СПОСОБ ПОЛУЧЕНИЯ МЕЛКОДИСПЕРСНОГО ГИДРОКСИАПАТИТА ВЫСОКОЙ ЧИСТОТЫ 1999
  • Белякова Е.Г.
RU2149827C1
US 5900254 A, 04.05.1999
US 4371484 A, 01.02.1983
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ КЛЕТОЧНОЙ ПРОНИЦАЕМОСТИ РАСТИТЕЛЬНОЙ ТКАНИВСЕСОЮЗНАЯ^ 0
SU340952A1

RU 2 299 869 C1

Авторы

Комлев Владимир Сергеевич

Баринов Сергей Миронович

Кубарев Олег Леонидович

Даты

2007-05-27Публикация

2005-10-12Подача