СПОСОБ ПОЛУЧЕНИЯ РАСХОДУЕМЫХ ЭЛЕКТРОДОВ Российский патент 2007 года по МПК C22B9/18 H05B7/07 

Описание патента на изобретение RU2297462C1

Изобретение относится к области электрометаллургии, в частности к получению расходуемых электродов для электрошлакового переплава.

Известен способ получения расходуемых электродов, включающий заливку твердой металлической составляющей жидким металлом, одновременно подаваемых в изложницу специальной формы в соотношении (2,7-3,3):1. В качестве твердой металлической составляющей используют металлизованные окатыши [Патент РФ №2233895, С22В 9/18, заяв. 24.03.2003, опубл. 10.08.2004. Б.И. №22].

Недостатком данного способа получения расходуемых электродов является то, что необходимо достаточно точное соблюдение технологических параметров, а именно соблюдение постоянными соотношений и скоростей их совместной подачи. При незначительных нарушениях заданных технологических параметров происходит неравномерное распределение металлизованных окатышей в объеме получаемого расходуемого электрода, что приводит при дальнейшем электрошлаковом переплаве к химической неоднородности получаемого металла. В данном способе объем окатышей значительно превосходит объем жидкого металла, что затрудняет получение высоколегированных марок стали без дополнительного по ходу ЭШП легирования, осуществляемого на поверхность рабочего флюса.

Известен способ получения расходуемых электродов, заключающийся в компактировании кусковой шихты, которую с целью упрочнения электрода и стабилизации состава шлаковой ванны в процессе переплава засыпают в форму и заливают расплавом рабочего флюса ЭШП [Авт. св. №1875572, С21С 5/56, заяв. 24.01.73, опубл. 05.06.80. Б.И. №21].

Недостатком данного способа получения расходуемых электродов является то, что использование в качестве связующего вещества флюса ЭШП приводит к тому, что в процессе дальнейшего электрошлакового переплава масса жидкого флюса увеличивается по ходу сплавления расходуемого электрода. Для поддержания неизменного количества рабочего флюса по ходу переплава необходимо его скачивание, что весьма затруднительно на установках ЭШП со стационарным кристаллизатором. Данный способ предполагает использование нерасходуемого электрода для осуществления электрошлакового процесса, т.к. пропускание электрического тока через получаемый по данному способу расходуемый электрод весьма затруднительно из-за перераспределения зон выделения джоулевой теплоты, поскольку расходуемый электрод неоднороден и большинство флюсов в твердом состоянии неэлектропроводны. Данное обстоятельство в значительной степени усложняет технологический процесс и ухудшает технико-экономические показатели. Использование нерасходуемого графитового электрода приводит к науглероживанию металла, получаемого в ходе ЭШП, и затрудняет получение низкоуглеродистых марок стали.

Известен способ получения расходуемых электродов, включающий засыпку шихтовых материалов порциями в матрицу и прессование, при этом в первую порцию шихтовых материалов вносят лигатурные добавки в количестве 30...70% [Авт. св. №427778, B22d 7/00, заяв. 18.04.72, опубл. 29.01.75].

Недостатком данного способа является то, что наблюдается неравномерное распределение лигатурных добавок по высоте получаемого расходуемого электрода, содержание в нижнем слое расходуемого электрода выше, чем в последующих вышележащих слоях. В процессе прессования наблюдается неодинаковая степень обжатия, а также недостаточная механическая прочность, что затрудняет получение расходуемых электродов большого диаметра.

В качестве прототипа принят способ получения расходуемых электродов с применением предварительно подогретых до температуры 650...850°С металлизованных окатышей, подаваемые первоначально в изложницу, при котором подача жидкого металла осуществляется в изложницу снизу под давлением 2...3 атм в соотношении с окатышами 1:(1...2,5) [патент РФ №2260065, С22В 9/19, заяв. 08.10.2004, опубл. 10.09.2005. Б.И. №25].

Недостатком использования данного способа заливки жидким металлом под давлением снизу предварительно подогретых и засыпанных в изложницу металлизованных окатышей является то, что для осуществления данного способа необходимы дополнительные устройства для создания избыточного давления, подаваемого снизу жидкого металла, что оказывается весьма затруднительно в промышленных условиях и требует дополнительных затрат. Предварительный подогрев металлизованных окатышей до температур 650...850°С приводит к их вторичному окислению, что весьма ухудшает дальнейший электрошлаковый переплав. Подача жидкого металла снизу в изложницу под давлением приводит к выдавливанию верхних слоев металлизованных окатышей и требует наличие сверху специальных устройств, предотвращающих данное явление и не препятствующих свободному выходу газов.

Задачей изобретения является упрощение технологии предварительного получения расходуемых электродов, а также повышение химической однородности и обеспечение достаточной механической прочности.

Задача решается тем, что в способе получения расходуемых электродов, включающим заливку жидким металлом твердой металлической составляющей, преимущественно в виде металлизованных окатышей, подаваемых первоначально перед заливкой, согласно изобретению, металлизованные окатыши подают в оболочку, имеющую форму готового расходуемого электрода, диаметром, не превышающим 200 мм, которую затем вместе с окатышами погружают в жидкий металл, при этом соотношение высоты расплава жидкого металла к высоте расходуемого электрода устанавливают равным 3:1.

Отличием заявленного способа является также то, что металлизованные окатыши могут быть предварительно нагреты до температуры 200...300°С. Кроме того, оболочка может быть выполнена в виде металлической сетки с диаметром ячейки, меньшим диаметра металлизованных окатышей.

Использование металлизованных окатышей в качестве твердой металлической составляющей, подаваемых в оболочку, имеющую форму готового электрода, дает возможность получения плотноупакованного расходуемого электрода с равномерным распределением железной составляющей по всему объему, достигаемой в результате того, что металлизованные окатыши имеют сферическую форму и высокую насыпную массу. Получаемый в результате дальнейшего электрошлакового переплава металл имеет низкое содержание вредных газов, примесей цветных металлов, а также других вредных примесей, не удаляемых по ходу ЭШП.

Подача металлизованных окатышей в оболочку и использование для придания формы расходуемому электроду металлической оболочки в виде сетки, с диаметром ячейки несколько меньше диаметра металлизованных окатышей, позволяет отказаться от изложниц специальной формы, что упрощает технологию и повышает технико-экономические показатели способа.

Способ проиллюстрирован фотографиями, где на фото №1 изображено среднее сечение получаемого расходуемого электрода; на фото 2 - боковая поверхность его.

Способ осуществляют следующим образом. При соотношении 1:1 высоты расплава к высоте расходуемого электрода диаметром 250 мм и температуре предварительного подогрева металлизованных окатышей до 200°С наблюдалось незначительное время протекания процесса (происходила необратимая кристаллизация металла на поверхности расходуемого электрода), в результате проникновение жидкого металла в расходуемый электрод составляло порядка 32%. При уменьшении диаметра расходуемого электрода до 200 мм и увеличении температуры предварительного подогрева металлизованных окатышей в интервале 200...300°С проникновение жидкого металла в расходуемый электрод увеличивалось и составляло порядка 47%. При уменьшении диаметра расходуемого электрода до 150 мм и увеличении температуры предварительного подогрева металлизованных окатышей свыше 300°С проникновение жидкого металла в расходуемый электрод увеличивалось и составляло порядка 60%. В результате во всех случаях пропитка жидким металлом расходуемых электродов была незначительной, а сами электроды были не пригодны для дальнейшего электрошлакового переплава из-за недостаточной их механической прочности.

При соотношении 2:1 высоты расплава к высоте расходуемого электрода диаметром 250 мм и температуре предварительного подогрева металлизованных окатышей до 200°С наблюдалось незначительное время протекания процесса (происходила необратимая кристаллизация металла на поверхности расходуемого электрода), в результате проникновение жидкого металла в расходуемый электрод составляло порядка 63%. При уменьшении диаметра расходуемого электрода до 200 мм и увеличении температуры предварительного подогрева металлизованных окатышей в интервале 200...300°С проникновение жидкого металла в расходуемый электрод увеличивалось и составляло порядка 82%. При уменьшении диаметра расходуемого электрода до 150 мм и увеличении температуры предварительного подогрева металлизованных окатышей свыше 300°С проникновение жидкого металла в расходуемый электрод увеличивалось и составляло порядка 90%. При диаметрах расходуемых электродов 250 и 200 мм пропитка жидким металлом была недостаточной, а сами электроды были не пригодны для дальнейшего электрошлакового переплава из-за недостаточной их механической прочности.

При соотношении 3:1 высоты расплава к высоте расходуемого электрода диаметром 250 мм и температуре предварительного подогрева металлизованных окатышей до 200°С наблюдалось увеличение времени протекания процесса (время в данном случае лимитировалось процессом разрушения металлической оболочки расходуемого электрода), в результате проникновение жидкого металла в расходуемый электрод составляло порядка 93%. При уменьшении диаметра расходуемого электрода до 200 мм и увеличении температуры предварительного подогрева металлизованных окатышей в интервале 200...300°С проникновение жидкого металла в расходуемый электрод увеличивалось и составляло порядка 100%. При уменьшении диаметра расходуемого электрода до 150 мм и увеличении температуры предварительного подогрева металлизованных окатышей свыше 300°С проникновение жидкого металла в расходуемый электрод увеличивалось и составляло порядка 100%. Во всех случаях пропитка жидким металлом расходуемых электродов была достаточной, а сами электроды были подвергнуты дальнейшему электрошлаковому переплаву (см. фото 1, 2). Однако увеличение температуры предварительного подогрева металлизованных окатышей свыше 300°С приводит к началу процессов вторичного их окисления, а также значительному увеличению себестоимости получаемых расходуемых электродов.

Пример конкретного выполнения способа.

Промышленные исследования проводились на ОАО «Златоустовском металлургическом заводе» в ЭСПЦ №3. Получение расходуемого электрода включает в себя следующие технологические операции: предварительно подогретые до температуры 200...300°С металлизованные окатыши диаметром 12...15 мм засыпали в стальную оболочку с диаметром ячейки 8 мм, имеющую форму готового расходуемого электрода. Приготовленный по данной технологии расходуемый электрод погружали в сталеразливочный ковш с жидким металлом, имеющим температуру 1600...1650°С. После выдержки расходуемого электрода в течение порядка 2 мин его доставали.

В качестве жидкого металла для пропитки металлизованных окатышей использовались следующие марки стали: 07Х17Н6, ЭП56, 20Х23Н18, 40Х13.

Полученные расходуемые электроды подвергались электрошлаковому переплаву на установке А-550 в кристаллизатор диаметром 120 мм и высотой 500 мм под флюсом АНФ - 6 в количестве 2,5 кг на плавку. С целью увеличения сплавляемой части к переплавляемым расходуемым электродам приваривались инвентарные головки. Разводку процесса осуществляли на токе 1,5 кА, при напряжении 48 В. Основной период плавки проходил на токе 2,5 кА и напряжении 48 В. Вывод усадки не производился. Процесс переплава протекал достаточно устойчиво, имело место вспенивание шлака. Значительные скачки тока отсутствовали. Пылевыделение при протекании процесса было незначительным. Исследование качества металла после электрошлакового переплава позволило констатировать наличие плотной бездефектной структуры, характерной для электрошлакового металла при достаточно хорошей поверхности слитка.

В результате поставленная выше задача достигается. Результаты промышленных испытаний представлены в таблице.

НаименованиеПредлагаемые интервалы соотношенийВысота расплава Высота электрода1:12:13:1Температура жидкого металла, °С1600...16501600...16501600...1650Диаметр электрода, мм250200150250200150250200150Температура металлизованных окатышей, °Сдо 200200-300более 300до 200200-300более 300до 200200-300более 300Время протекания процесса, с*3352655167857092120Проникновение жидкого металла в расходуемый электрод, %**32476063829093100100Себестоимость слитка марки 08Х18Н10, руб/т.***45752462154732049762Примечание:
*Время протекания процесса определялось экспериментально, исходя из начала протекания процессов разрушения металлической оболочки расходуемого электрода или начала необратимой кристаллизации металла на поверхности последних.
** Глубину проникновения жидкого металла в расходуемый электрод определяли как отношение глубины проникновения расплава в электрод * 100% к радиусу расходуемого электрода
*** Себестоимость рассчитывалась только для тех случаев, где получались расходуемые электроды пригодные для дальнейшего электрошлакового переплава и где качество получаемого слитка, удовлетворяло требованиям к металлу электрошлакового переплава.

Из таблицы видно, что наиболее оптимальное по себестоимости и качеству получаемого слитка в ходе электрошлакового переплава было у расходуемых электродов с диаметром преимущественно до 200 мм, получаемых при соотношении высоты расплава к высоте расходуемого электрода 3:1 и температурой предварительного подогрева металлизованных окатышей 200...300°С.

Промышленная применимость

Предлагаемый способ может быть использован в единичном и массовом производстве, при изготовлении расходуемых электродов для электрошлакового переплава.

Похожие патенты RU2297462C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ РАСХОДУЕМЫХ ЭЛЕКТРОДОВ 2006
  • Чуманов Илья Валерьевич
  • Пятыгин Дмитрий Александрович
  • Ворона Евгений Андреевич
  • Чуманов Валерий Иванович
RU2314355C1
СПОСОБ ПОЛУЧЕНИЯ РАСХОДУЕМЫХ ЭЛЕКТРОДОВ 2004
  • Чуманов В.И.
  • Чуманов И.В.
  • Вотинов В.В.
RU2260065C1
Способ получения расходуемых электродов для электрошлакового переплава 2020
  • Чуманов Валерий Иванович
  • Чуманов Илья Валерьевич
  • Сергеев Дмитрий Владимирович
  • Белкина Ксения Игоревна
RU2742094C1
СПОСОБ ПОЛУЧЕНИЯ РАСХОДУЕМЫХ ЭЛЕКТРОДОВ 2003
  • Чуманов В.И.
  • Чуманов И.В.
  • Пятыгин Д.А.
  • Вотинов В.В.
RU2233895C1
Способ получения многослойных слитков методом электрошлакового переплава 2021
  • Чуманов Валерий Иванович
  • Чуманов Илья Валерьевич
  • Сергеев Дмитрий Владимирович
  • Матвеева Мария Андреевна
RU2761192C1
Способ получения расходуемого электрода электрошлакового переплава для формирования многослойной отливки 2017
  • Чуманов Валерий Иванович
  • Чуманов Илья Валерьевич
  • Матевеева Мария Андреевна
RU2674596C1
СПОСОБ ПОЛУЧЕНИЯ СЛИТКА ПЕРЕМЕННОГО СЕЧЕНИЯ ЭЛЕКТРОШЛАКОВЫМ ПЕРЕПЛАВОМ 1992
  • Чуманов В.И.
  • Белозеров Б.П.
  • Чуманов И.В.
RU2048553C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНЫХ СЛИТКОВ ЭЛЕКТРОШЛАКОВЫМ ПЕРЕПЛАВОМ 1999
  • Чуманов В.И.
  • Рощин В.Е.
  • Чуманов И.В.
  • Кадочников Ю.Г.
RU2163269C1
Способ легирования заготовки при помощи плавящегося электрода с покрытием в процессе электрошлакового переплава 2019
  • Чуманов Валерий Иванович
  • Чуманов Илья Валерьевич
  • Матвеева Мария Андреевна
  • Сергеев Дмитрий Владимирович
RU2701698C1
СПОСОБ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА (ВАРИАНТЫ) 2006
  • Чуманов Илья Валерьевич
  • Пятыгин Дмитрий Александрович
  • Чуманов Валерий Иванович
RU2332471C2

Иллюстрации к изобретению RU 2 297 462 C1

Реферат патента 2007 года СПОСОБ ПОЛУЧЕНИЯ РАСХОДУЕМЫХ ЭЛЕКТРОДОВ

Изобретение относится к электрометаллургии, в частности к получению расходуемых электродов для электрошлакового переплава. Металлизованные окатыши подают в оболочку, имеющую форму готового расходуемого электрода, диаметром, не превышающим 200 мм, которую затем с окатышами погружают в жидкий металл, при этом соотношение высоты расплава жидкого металла к высоте готового расходуемого электрода устанавливают равным 3:1. Изобретение позволяет упростить технологию предварительного получения расходуемого электрода, а также повысить химическую однородность и достаточную механическую прочность электродов. 2 з.п. ф-лы, 1 табл., 2 ил.

Формула изобретения RU 2 297 462 C1

1. Способ получения расходуемых электродов, включающий заливку жидким металлом твердой металлической составляющей, преимущественно в виде металлизованных окатышей, подаваемых первоначально перед заливкой, отличающийся тем, что металлизованные окатыши подают в оболочку, имеющую форму готового расходуемого электрода, диаметром, не превышающим 200 мм, которую затем с окатышами погружают в жидкий металл, при этом соотношение высоты расплава жидкого металла к высоте готового расходуемого электрода устанавливают равным 3:1.2. Способ по п.1, отличающийся тем, что металлизованные окатыши предварительно нагревают до температуры 200-300°С.3. Способ по п.1, отличающийся тем, что оболочка выполнена в виде металлической сетки с диаметром ячейки, меньшим диаметра металлизованных окатышей.

Документы, цитированные в отчете о поиске Патент 2007 года RU2297462C1

СПОСОБ ПОЛУЧЕНИЯ РАСХОДУЕМЫХ ЭЛЕКТРОДОВ 2004
  • Чуманов В.И.
  • Чуманов И.В.
  • Вотинов В.В.
RU2260065C1
СПОСОБ ПОЛУЧЕНИЯ РАСХОДУЕМЫХ ЭЛЕКТРОДОВ 2003
  • Чуманов В.И.
  • Чуманов И.В.
  • Пятыгин Д.А.
  • Вотинов В.В.
RU2233895C1
1972
SU427778A1
Пюпитр для работы на пишущих машинах 1922
  • Лавровский Д.П.
SU86A1
US 3997332 A, 14.12.1976
US 4159184 A, 26.06.1976.

RU 2 297 462 C1

Авторы

Чуманов Валерий Иванович

Потапов Виктор Иванович

Чуманов Илья Валерьевич

Вотинов Вячеслав Владимирович

Даты

2007-04-20Публикация

2005-10-10Подача