Изобретение относится к водоподготовке и может быть использовано для получения катионообменных фильтров пространственно-глобулярной структуры. обеспечивающих комплексную очистку воды, в том числе от катионов тяжелых металлов.
Из уровня техники известны полимеры пространственно-глобулярной структуры (ПГС-полимеры), обладающие высокой фильтрационной способностью и используемые для изготовления фильтрующих элементов.
ПГС-полимер представляет собой неплавкое и нерастворимое в обычных растворителях высокопроницаемое изделие, структура которого образована микроглобулами размером от 25-30 Å до 10-14 мкм. ПГС-материал с глобулами размером 3-7 мкм используют для сорбционных процессов при высоких скоростях пропускания растворов. Так как размер микроглобул ионита ПГС на 2 порядка меньше, чем у ионитов стандартного зернения (5-7 мкм против 0.5-0.7 мм), то объемные скорости пропускания растворов могут достигать величин в 100 и более раз превышающих скорости пропускания растворов через неподвижный слой ионита обычного зернения (1000-2000 против 10-15 уд. об/ч соответственно). Микроглобулы в ионите ПГС образуют регулярную высокопроницаемую структуру, что обусловлено спонтанным саморегулирующимся механизмом полимерообразования. Средний размер пор составляет 3-5 мкм, большая развернутая поверхность (до 100-150 м2/г), узкий диапазон распределения пор по размерам (обычно ±10%) придают этим материалам высокие технологические свойства и позволяют использовать их в качестве фильтрующих перегородок. Структура и свойства ионита ПГС известны, например, из Энциклопедии полимеров. М.: Издательство Советская Энциклопедия 1972. с 652-658. Различные модификации способа получения ПГС материала, например, в соответствии с а.с. СССР 1378319 от 23.05.1985, C08J 5/20, C08G 8/22, а.с. СССР 1023788 от 24.10.1980, С08J 9/10 и др. позволяют значительно расширить диапазон размеров его пор и, тем самым, повысить проницаемость сорбента.
В такой системе большая часть обменных группировок находится на поверхности микроглобул, а массообмен достигается не за счет диффузии ионов из раствора в глубь полимерного тела (как это имеет место в обычных ионитах, в том числе и макропористых), а за счет принудительного просачивания растворов через микропоры полимерного тела. Скорость обмена подчиняется закономерностям пленочной кинетики, и поэтому ионный обмен на ПГС-ионитах протекает тем эффективнее, чем быстрее обновляется раствор в микропорах, т.е. скорость обмена возрастает с повышением скорости пропускания раствора.
Фильтрующие материалы с ПГС структурой и способы их получения известны, в частности, из патента US 4567207, C08G 12/00. Патент защищает широкий спектр материалов, получаемых при поликонденсации формальдегида с мономером, способным образовать с формальдегидом ПГС-структуру в кислой среде при рН 0.1...4. Концентрация полимера 20...65 мас.%. Диаметр пор полимера 0.0025...10 мкм, коэффициент проницаемости 2×10-7...2×10-2 см/сек.
Согласно примерам 5 и 6 известного решения для изготовления ПГС-полимера, обладающего высокой фильтрующей способностью, смешивают водные растворы резорцина и формальдегида, вводят катализатор - соляную кислоту и выдерживают в течение времени, достаточного для образования 38-40 мас.% полимера. Далее суспензию разливают в формы для отверждения и выдерживают при комнатной Т, после чего нагревают до Т=80...82°С.
Несмотря на высокие фильтрационные свойства материалы, изготовленные по технологии патента US 4567207, проявляют слабые ионообменные свойства в нейтральных и слабощелочных средах. В кислых средах ионный обмен практически отсутствует. Указанные особенности поведения известного материала не позволяют с его помощью эффективно удалять тяжелые металлы из водных сред.
Известный из US 4567207 ПГС-полимер, содержащий продукт конденсации резорцина и формальдегида в присутствии кислоты, является наиболее близким для заявляемого решения фильтрующего материала.
Из уровня техники известен способ получения сульфофенольных катионитов высокой емкости, химической стойкости и механической прочности (А.С. СССР 108258, 39b, 22, 12q, 2001).
Согласно известному решению сульфофенольные катиониты получают путем конденсации одно- или многоатомных фенолов или сульфофенолов сначала с сульфокислотами алифатических или ароматических карбонильных соединений, а затем с формальдегидом, при этом для увеличения количества вводимых в катионит сульфогрупп без увеличения количества сульфированного карбонильного соединения на первой стадии процесса, для конденсации с фенолами или сульфофенолами применяют сульфокислоты алифатических или ароматических кетонов.
Известный способ, являющийся наиболее близким заявляемому способу изготовления фильтрующего материала (прототипом), не обеспечивает получение ПГС-полимера с сульфогруппами.
Задачей заявляемого изобретения является повышение эксплуатационных свойств фильтрующего материала путем целенаправленного изменения его структуры, позволяющего обеспечить удаление тяжелых металлов из воды.
Задача решается за счет того, что в способе изготовления фильтрующего материала, включающем конденсацию формальдегида с сульфорезорцином и отверждение, процесс осуществляют следующим образом:
- смесь избытка формальдегида с сульфитом натрия или калия выдерживают в условиях, обеспечивающих синтез сульфометанола в отсутствие полимеризации формальдегида,
- к полученному раствору добавляют резорцин и выдерживают в условиях, обеспечивающих одновременное протекание синтеза сульфорезорцина и его форконденсации с резорцином и формальдегидом,
- поликонденсацию и отверждение полученных форолигомеров осуществляют в кислой среде. При этом образуется сульфорезорцинформальдегидный ПГС-полимер.
Частные случаи реализации заявляемого решения характеризуются следующими параметрами:
- смесь избытка формальдегида с сульфитом натрия или калия выдерживают при Т=+20...30°С в течение 0.3-1 час, при этом соотношение формальдегид : сульфит составляет 4.7...4.9 моль/моль.
- поликонденсацию форолигомеров осуществляют при Т=+17...33°С, в течение 0.6...2 час.
- отверждение производят в две стадии - сначала при Т=+30...40°С в течение 1-2 час, а затем при Т=+85...95°С в течение 16-24 час.
Полученный фильтрующий материал характеризуется ПГС структурой, о чем свидетельствует его проницаемость по отношению к воде и водным растворам. На ИК-спектре поглощения образца материала (чертеж) ясно различимы полосы с минимумами 1040 см-1 (характерная полоса) и 1190 см-1 (слабо выраженная полоса), соответствующие валентным колебаниям группировок -SO3Н. В то же время, на ИК-спектре поглощения ПГС-материала на основе резорциноформальдегидного полимера такие полосы отсутствуют (Фиг.1). Указанные особенности ИК-спектра поглощения свидетельствуют о присутствии в заявляемом материале связанных функциональных групп -SO3Н.
Сущность способа заключается в том, что заявляемый сульфосодержащий сильнокислотный катионит получают в результате трехмерной поликонденсации сульфированного резорцина с формальдегидом.
Реакция включает несколько стадий:
1. Сначала осуществляют стадию синтеза сульфирующего агента (сульфометанола) из избытка формальдегида и сульфита натрия (калия) по реакции:
2. Полученный щелочной раствор со стадии 1 заливают в реактор, где одновременно протекают реакции сульфирования резорцина (2) и форконденсации резорцина и образующегося сульфорезорцина с формальдегидом.
3. По окончании стадии образования форолигомеров в том же реакторе осуществляют реакцию их конденсации с формальдегидом в кислой среде с получением олигомеров более высокой молекулярной массы.
4. На стадии 4 синтеза, когда начинается образование нерастворимого в воде продукта, реакционный раствор (эмульсию) сливают в заранее заготовленные формы, где протекает гелеобразование, а затем (при нагревании) и полное отверждение смеси с получением трехмерного полимера пространственно-глобулярной структуры в виде готового для практического использования катионита. Управляя параметрами синтеза, можно варьировать диаметр пор получаемого полимера в интервале 0.1...3 мкм.
Следует отметить, что для получения изделия ПГС-структуры с заданными свойствами необходимо параметры известного процесса изменить существенным образом, неочевидным для специалиста в данной области техники:
- реакцию синтеза проводят в две стадии - сначала в щелочной (рН≤10), а затем в кислой среде (1≤рН≤3). Если первая стадия обеспечивает получение сульфирующего агента и форолигомеров, то на второй стадии (кислотной конденсации) регулированием величины рН можно получить изделия с различным размером пор. Наиболее крупнопористые полимеры (средний размер пор 3 мкм) получаются в наиболее кислой среде;
- в частном случае реализации соотношение резорцин/сульфит натрия целесообразно не менее 3 моль/моль;
- соотношение формальдегид/сульфит может варьироваться в интервале 4.7...4.9 моль/моль;
- концентрация резорцина в общем объеме реакционной смеси оптимальна в интервале 18...20 мас.%;
- температура реакции на всех стадиях синтеза должна удерживаться в строго заданных пределах.
Заявляемое изобретение иллюстрируется следующими примерами.
Пример 1.
Соотношение резорцин/формальдегид/сульфит натрия=1:2.4:0.33 моль/моль; [резорцин]=18 мас.%.
В емкость 500 мл, содержащую 138 мл 37% формалина (1.87 моль CH2O) и 142 мл воды, загружают 51 г сульфита натрия (0.4 моль) и перемешивают до полного растворения последнего при комнатной температуре в течение 1 час, соотношение формальдегид/сульфит=4.7 моль/моль.
В реактор, содержащий раствор 135 г резорцина (1.23 моль) в 150 мл воды, при комнатной температуре заливают раствор полученного сульфирующего агента из емкости и перемешивают до полного исчезновения запаха формальдегида. Температуру смеси поддерживают в интервале 42÷35°С. Раствор охлаждают до комнатной температуры, и заливают кислый раствор формалина (82 мл 37% формалина (1.11 моль СН2O) и 35 мл концентрированной соляной кислоты). Затем реакционную смесь (рН 2)перемешивают до помутнения при Т=28°С (начало образования нерастворимых олигомеров), после чего сливают в форму из двух коаксиально расположенных полимерных труб с каркасом посередине, где смесь застывает при Т=+30...40°С в течение 2 ч. После этого форму с затвердевшим полимером помещают в печь на 20 ч при Т=+85...90°С для окончательного формирования полимера трехмерной ПГС-структуры в виде готового изделия (фильтрующего патрона). Средний размер пор полимера 1 мкм.
После перевода в Na-форму катионит в виде такого патрона при эксплуатации в нейтральной или щелочной среде способен поглотить 6.1 г катионов никеля из раствора с [Ni2+]исх=340 мг/л.
Пример 2.
Соотношение резорцин/формальдегид/сульфит натрия=1/1.6/0.33 моль/моль; [резорцин]=18 мас.%.
В емкость 500 мл, содержащую 146 мл 37% формалина (1.95 моль СН2О) и 135 мл воды, загружают 51 г сульфита натрия (0.4 моль) и перемешивают до полного растворения последнего при комнатной температуре в течение 0.3 час, соотношение формальдегид/сульфит=4.9 моль/моль.
В реактор, содержащий раствор 135 г резорцина (1.23 моль) в 150 мл воды, при комнатной температуре заливают полученный раствор сульфирующего агента и перемешивают до полного исчезновения запаха формальдегида. Температуру смеси поддерживают в интервале 42÷35°С. Раствор охлаждают до комнатной температуры и далее в него заливают раствор ортофосфорной кислоты (34 мл 78 мас.% в 56 мл воды). Затем перемешивают реакционную смесь (рН≈3) до помутнения при Т=33°С (начало образования нерастворимых олигомеров), после чего сливают в форму из двух коаксиально расположенных полимерных труб с каркасом посередине, где полимер застывает в течение 1 ч. После этого форму с затвердевшим полимером помещают в печь на 16 час при Т=+90...95°С для окончательного формирования трехмерной ПГС-структуры в виде готового изделия (фильтрующего патрона). Средний размер пор полимера 0.1÷0.3 мкм. После перевода в Na-форму катионит в виде такого патрона при эксплуатации в нейтральной или щелочной среде способен поглотить 6.5 г катионов железа из раствора с [Fe2+]исх=290 мг/л.
Пример 3.
Соотношение резорцин/формальдегид/сульфит натрия=1/1.5/0.33 моль/моль; [резорцин]=18 мас.%. При комнатной температуре в течение 1 час; соотношение формальдегид/сульфит=4.7 моль/моль.
В реактор, содержащий раствор 135 г резорцина (1.23 моль) в 150 мл воды, при комнатной температуре заливают раствор сульфирующего агента из емкости и перемешивают до полного исчезновения запаха формальдегида. Температуру смеси поддерживают в интервале 46°C÷31°C. Раствор охлаждают до комнатной температуры и далее в него заливают раствор соляной кислоты (34 мл концентрированной соляной кислоты в 85 мл воды). Затем реакционную смесь (рН≈1) перемешивают до помутнения при Т=28°С (начало образования нерастворимых олигомеров), после чего сливают в форму из двух коаксиально расположенных полимерных труб с каркасом посередине, где полимер застывает в течение 2 час при Т=+30...40°С. После этого форму с затвердевшим полимером помещают в печь на 18 час при Т=+90...95°С для окончательного формирования трехмерной ПГС-структуры в виде готового изделия (фильтрующего патрона).
Средний размер пор полимера 3 мкм.
Катионит в виде такого патрона при эксплуатации в кислой среде способен поглотить 2.5 г катионов кальция из раствора с [Са2+]исх=1400 мг/л при рН 3.5.
Условия синтеза в примерах 4÷6 (за исключением приведенных в табл.1) аналогичны примеру 3.
Для реализации комплексного изобретения, включающего два объекта - способ и материал, связанные единым изобретательским замыслом согласно раскрытым выше примерам, были использованы следующие реагенты:
Резорцин марки "Mitsubishi";
Формалин 37% ГОСТ 1625-98;
Сульфит натрия ГОСТ 246-41;
Кислота соляная ГОСТ 3118-77;
Кислота ортофосфорная ГОСТ 6552-80.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ ФИЛЬТРУЮЩЕГО МАТЕРИАЛА И ФИЛЬТРУЮЩИЙ МАТЕРИАЛ | 2005 |
|
RU2297270C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРА С ПРОСТРАНСТВЕННО-ГЛОБУЛЯРНОЙ СТРУКТУРОЙ | 2011 |
|
RU2470948C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ФИЛЬТРУЮЩЕГО МАТЕРИАЛА И ФИЛЬТРУЮЩИЙ МАТЕРИАЛ | 2005 |
|
RU2318577C2 |
СПОСОБ ПОЛУЧЕНИЯ ФИЛЬТРУЮЩЕГО МАТЕРИАЛА | 2005 |
|
RU2286354C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ФИЛЬТРУЮЩЕГО МАТЕРИАЛА | 2005 |
|
RU2287356C1 |
СПОСОБ ПОЛУЧЕНИЯ ПРОНИЦАЕМОГО ИОНООБМЕННОГО МАТЕРИАЛА | 2012 |
|
RU2510403C1 |
ПРОТОЧНЫЙ ФИЛЬТР | 2003 |
|
RU2257253C2 |
Способ получения сорбентов для извлечения цезия из высокоминерализованных щелочных сред | 2018 |
|
RU2693174C1 |
ФИЛЬТР ДЛЯ ВОДЫ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2001 |
|
RU2203721C2 |
Способ получения электроноионообменников | 1972 |
|
SU444783A1 |
Изобретение относится к водоподготовке и может быть использовано для получения катионообменных фильтров пространственно-глобулярной структуры, обеспечивающий комплексную очистку воды. Способ изготовления фильтрующего материала включает конденсацию формальдегида с сульфорезорцином и отверждение, при этом смесь избытка формальдегида с сульфитом натрия или калия выдерживают в условиях, обеспечивающих синтез сульфирующего агента в отсутствие полимеризации формальдегида, далее к полученному раствору добавляют резорцин и выдерживают в условиях, обеспечивающих одновременное протекание синтеза сульфорезорцина и форконденсации его и резорцина с формальдегидом, а поликонденсацию полученных форолигомеров и последующее отверждение осуществляют в кислой среде. Материал фильтрующий включает продукт конденсации формальдегида с резорцином в кислой среде и имеет пространственно-глобулярную структуру, при этом материал содержит продукт конденсации формальдегида с сульфорезорцином и резорцином и дополнительно функциональные группы -SO3Н, характеризуемые на ИК-спектре поглощения образца материала полосами с минимумами 1040 см-1 (характерная полоса) и 1190 см-1 (слабо выраженная полоса). Изобретение обеспечивает получение материала, эффективного для удаления тяжелых металлов из воды. 2 н. и 3 з.п. ф-лы, 1 табл., 1 ил.
US 4567207 А, 28.01.1986 | |||
ФИЛЬТР ДЛЯ ВОДЫ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2001 |
|
RU2203721C2 |
СПОСОБ ПОЛУЧЕНИЯ ИОНООБМЕННОГО СОРБЕНТА | 1991 |
|
RU2015996C1 |
Способ получения формованных материалов на основе мочевино-формальдегидной смолы | 1980 |
|
SU1162822A1 |
US 6794034 A, 21.09.2004 | |||
US 6841023 A, 11.01.2005 | |||
US 4871596 A, 03.10.1989 | |||
US 6039892 A, 21.03.2000. |
Авторы
Даты
2007-05-20—Публикация
2005-11-01—Подача