СПОСОБ ПРИГОТОВЛЕНИЯ МИКРОСФЕРИЧЕСКОГО КАТАЛИЗАТОРА ДЛЯ КРЕКИНГА НЕФТЯНЫХ ФРАКЦИЙ Российский патент 2007 года по МПК B01J29/08 B01J23/10 B01J37/00 

Описание патента на изобретение RU2300420C2

Изобретение относится к нефтеперерабатывающей промышленности, в частности к способу приготовления катализаторов крекинга.

Известны катализаторы крекинга на основе ультрастабильного цеолита с повышенным решеточным модулем, которые обладают несколькими существенными преимуществами по сравнению с катализаторами на основе цеолитов в редкоземельной или смешанной катион-декатионированной форме:

- катализаторы обладают высокой термостабильностью и незначительно изменяют свои каталитические свойства в ходе эксплуатации;

- бензин крекинга, полученный на таких катализаторах, обладает высокими октановыми характеристиками.

Известен способ получения катализатора крекинга на основе ультрастабильного цеолита, каолина, источников оксидов алюминия и кремния [US 6114267, B01J 29/06, 05.09.2000]. В указанном способе ультрастабилизацию цеолита осуществляют с применением гексафторсиликата аммония. Решеточный модуль цеолита при этом составил 12,5 и содержание редкоземельных элементов 4 мас.%. Недостатком указанного способа является снижение кристалличности цеолита при взаимодействии с гексафторсиликатом аммония и низкая активность получаемого на основе такого цеолита катализатора.

Известен способ приготовления катализаторов крекинга на основе ультрастабильного цеолита типа Y, аморфного алюмосиликата и каолина [US 4826793, B01J 29/38, 02.05.1989; 3957689, B01J 29/06, 18.05.1976; 3402996, B01J 29/08, 24.09.1968]. Ультрастабилизацию аммонийной формы цеолита проводят в среде водяного пара при температурах от 538 до 816°С с получением цеолита, имеющего решеточный модуль в диапазоне от 7,0 до 12,0. Недостатком указанного способа является снижение кристалличности цеолита при его ультрастабилизации и низкая активность получаемого катализатора.

Известен способ приготовления цеолитсодержащего катализатора для крекинга нефтяных фракций с применением ультрастабильного цеолита, в котором ультрастабилизации подвергают цеолит в катион-декатионированной форме при температуре 500-550°С и парциальном давлении паров воды ниже 0,8 атм. [РФ 2127632, B01J 29/08, 20.03.1999]. Недостатком указанного способа является низкий решеточный модуль получаемого цеолита и, соответственно, его невысокие термостабильные и каталитические свойства.

Задачей, на решение которой направлено предлагаемое изобретение, является сохранение кристалличности цеолита NaY при его ультрастабилизации в среде водяного пара и получение катализатора с высокой каталитической активностью. Относительную кристалличность цеолита и его решеточный модуль определяют методом рентгенофазового анализа.

Задача решается способом ультрастабилизации цеолита в среде водяного пара, при котором ультрастабилизацию проводят в две стадии:

- на первой стадии ультрастабилизации в среде водяного пара подвергают непосредственно цеолит;

- на второй стадии осуществляют ультрастабилизацию цеолита в составе матрицы катализатора при прокалке готового катализатора.

Первую стадию ультрастабилизации цеолита осуществляют в мягких условиях с сохранением относительной кристалличности цеолита не менее 95% с получением решеточного модуля цеолита в диапазоне от 5,5 до 7,5. После смешения цеолита с компонентами матрицы, распылительной сушки полученной композиции проводят ультрастабилизацию цеолита в среде водяного пара в более жестких условиях с получением цеолита с решеточным модулем в диапазоне от 7,5 до 20. Ультрастабилизация цеолита в составе катализатора при жестких условиях позволяет сохранить относительную кристалличность на уровне 95%.

Предлагаемый способ осуществляют следующим образом. Предварительно готовят компоненты матрицы катализатора:

- аморфный алюмосиликат с содержанием оксида натрия менее 0,2 мас.% и оксида алюминия 6-25 мас.%;

- переосажденный гидроксид алюминия с содержанием оксида натрия менее 0,1 мас.%;

- бентонитовая глина следующего химического состава, мас.%:

оксид натрия менее0,5оксид алюминия16,0-26,0оксид магния2,5-4,0оксид кальция1,5-3,0оксид кремнияостальное

Содержание монтмориллонита (основное вещество) в бентонитовой глине должно составлять не менее 95%.

Ультрастабильный цеолит готовят следующим образом. Цеолит NaY подвергают двухступенчатому ионному обмену на катионы аммония и редкоземельные катионы из растворов их азотнокислых солей с промежуточной фильтрацией и промывкой. Ионный обмен осуществляют таким образом, чтобы цеолит имел следующий химический состав, мас.%:

оксид натрия от2,5-4,0оксиды редкоземельных элементов0,5-6,0

Цеолит подвергают ультрастабилизации в среде водяного пара при следующих условиях:

температура550-650°Спарциальное давление паров воды0,1-1,0 атм.продолжительность ультрастабилизации1-6 ч

В результате ультрастабилизации получают цеолит с решеточным модулем в диапазоне от 5,5 до 7,5 и относительной кристалличностью не менее 95%. Ультрастабильный цеолит смешивают с водой и получают цеолитную суспензию.

Суспензию указанных компонентов матрицы смешивают с суспензией ультрастабильного цеолита. Полученную композицию формуют методом распылительной сушки. Средний размер частиц составляет от 70 до 75 микрон. Высушенный катализатор подвергают прокалке в воздухе или дымовых газах при температуре 450-550°С.Прокаленный катализатор подвергают высокотемпературной прокалке в среде водяного пара при следующих условиях:

температура650-750°Спарциальное давление паров воды0,05-0,3 атм.продолжительность ультрастабилизации1-12 ч

В результате ультрастабилизации получают катализатор, в котором цеолит имеет решеточный модуль в диапазоне от 7,5 до 20,0 с относительной кристалличностью не менее 95%.

Сущность изобретения иллюстрируется следующими примерами.

Примеры 1-2 характеризуют известный способ приготовления микросферического катализатора крекинга на основе ультрастабильного цеолита.

Примеры 3-9 характеризуют предлагаемый способ приготовления микросферического катализатора крекинга на основе ультрастабильного цеолита.

Пример 1.

Суспензию 25 г цеолита NaY с решеточным модулем 4,8 с содержанием цеолита в суспензии 100 г/л подвергают ионному обмену на катионы аммония из раствора азотнокислого аммония таким образом, чтобы соотношение г-экв аммония и натрия составляет 1,0. Температура ионного обмена - комнатная, продолжительность ионного обмена составляет 3 ч. Осуществляют фильтрацию цеолита после первого ионного обмена и промывку свежей водой. Остаточное содержание оксида натрия составляет 7 мас.%. Осуществляют второй ионный обмен на азотнокислый аммоний при соотношении 2,0 г-экв азотнокислого аммония на г-экв оксида натрия в цеолите. Температура ионного обмена составляет 60°С, продолжительность обмена - 3 ч. Осуществляют фильтрацию цеолита после второго ионного обмена и промывку подогретой свежей водой. Остаточное содержание оксида натрия - 4,3 мас.%.

Проводят ультрастабилизацию цеолита при температуре 550°С в течение 4 ч в среде водяного пара при парциальном давлении паров воды, равном 0,5 атм.

Полученный цеолит имеет решеточный модуль 5,8, относительная кристалличность цеолита составляет 95%.

Готовят суспензию 25 г цеолита в 250 г воды. Полученный цеолит подвергают третьему ионному обмену на катионы редкоземельных элементов из раствора смеси их нитратов при соотношении г-экв редкоземельных элементов и натрия, равном 1,5. Суспензию цеолита фильтруют и промывают свежей водой. Содержание оксидов редкоземельных элементов в цеолите - 9,1 мас.%. Остаточное содержание оксида натрия составляет 1,8 мас.%.

Осадок цеолита с фильтра репульпируют. Полученную суспензию цеолита смешивают с суспензиями следующих компонентов:

- аморфный алюмосиликат с содержанием оксида натрия 0,2 мас.% и оксида алюминия 11 мас.%,

- переосажденный гидроксид алюминия с содержанием оксида натрия 0,1 мас.%,

- бентонитовая глина следующего химического состава, мас.%:

оксид натрия0,35оксид алюминия24,0оксид магния3,5оксид кальция2,5.

Суспензии смешивают в таких пропорциях, чтобы композиция катализатора в пересчете на абсолютно сухое вещество имела следующий компонентный состав, мас.%:

цеолит20оксид алюминия из переосажденного гидроксида алюминия20бентонитовая глина22аморфный алюмосиликат38

Катализатор формуют методом распылительной сушки и прокаливают в воздухе с парциальным давлением паров воды 0,1 атм. при температуре 650°С в течение 3 ч. Решеточный модуль цеолита в готовом катализаторе составляет 6,2, относительная кристалличность цеолита - 95%. Содержание оксидов редкоземельных элементов в катализаторе - 1,82 мас.%.

Известный способ приготовления катализатора не обеспечивает получения высокого решеточного модуля цеолита в готовом катализаторе.

Пример 2.

Отличие от примера 1 заключается в применении на стадии прокалки катализатора температуры 750°С и парциального давления паров воды, равного 0,2 атм. Решеточный модуль цеолита в готовом катализаторе составляет 8,2, относительная кристалличность цеолита - 76%. Содержание оксидов редкоземельных элементов в катализаторе - 1,82 мас.%.

Известный способ приготовления катализатора не обеспечивает сохранения кристалличности цеолита при указанных условиях прокалки.

Пример 3.

Приготовление цеолита проводят, как в примере 1. Отличие заключается в том, что ультрастабилизацию цеолита проводят при температуре 560°С, продолжительности ультрастабилизации 3 ч в среде водяного пара при парциальном давлении паров воды, равном 1,0 атм.

Полученный цеолит имеет решеточный модуль 6,5, относительная кристалличность цеолита составляет 95%.

Третий ионный обмен проводят, как в примере 1. Содержание оксидов редкоземельных элементов в цеолите составляет 9,7 мас.%. Остаточное содержание оксида натрия в цеолите - 1,3 мас.%.

Приготовление катализаторной композиции и формовку катализатора проводят, как в примере 1. Содержание редкоземельных элементов в катализаторе - 1,94 мас.%.

Отличие заключается в условиях прокалки катализатора в среде водяного пара. Прокалку катализатора проводят при температуре 710°С в течение 3 ч и парциальном давлении паров воды 0,2 атм. Решеточный модуль цеолита в готовом катализаторе составляет 10,5 при относительной кристалличности 93%. Предлагаемый способ позволяет достичь высокого решеточного модуля цеолита при сохранении его относительной кристалличности.

Пример 4.

Приготовление цеолита проводят, как в примере 1. Отличие заключается в том, что ультрастабилизацию цеолита проводят при температуре 580°С, в течение 4 ч в среде водяного пара при парциальном давлении паров воды, равном 0,2 атм.

Полученный цеолит имеет решеточный модуль 7,5 при относительной кристалличности 94%. Содержание оксидов редкоземельных элементов в цеолите составляет 10,3 мас.%. Остаточное содержание оксида натрия - 1,2 мас.%.

Приготовление катализаторной композиции и формовку катализатора проводят, как в примере 1. Отличие заключается в условиях высокотемпературной прокалки катализатора в среде водяного пара.

Высокотемпературную прокалку катализатора в среде водяного пара проводят при температуре 730°С в течение 3 ч и парциальном давлении паров воды 0,1 атм. Решеточный модуль цеолита в готовом катализаторе составляет 19,2 при относительной кристалличности 92%.

Предлагаемый способ позволяет достичь высокого решеточного модуля цеолита при сохранении его относительной кристалличности.

Пример 5.

Суспензию 25 г цеолита NaY с решеточным модулем 4,8 с содержанием цеолита в суспензии 100 г/л подвергают ионному обмену на катионы аммония из раствора азотнокислого аммония таким образом, чтобы соотношение г-экв аммония и натрия составляло 1,5. Температура ионного обмена - комнатная, продолжительность ионного обмена составляет 3 ч. Осуществляют фильтрацию цеолита после первого ионного обмена и промывку свежей водой. Остаточное содержание оксида натрия - 5,8 мас.%. Осуществляют второй ионный обмен на катионы аммония и катионы редкоземельных элементов из азотнокислых солей при соотношении 2,0 г-экв азотнокислого аммония на г-экв оксида натрия в цеолите и 0,5 г-экв редкоземельных элементов на г-экв оксида натрия в цеолите. Температура ионного обмена составляет 90°С, продолжительность обмена - 3 ч. Осуществляют фильтрацию цеолита после второго ионного обмена и промывку подогретой свежей водой. Проводят ультрастабилизацию цеолита при температуре 650°С в течение 3 ч в среде водяного пара при парциальном давлении паров воды, равном 0,2 атм.

Полученный цеолит имеет решеточный модуль 8,5 при относительной кристалличности 92%.

Готовят суспензию 25 г цеолита в 250 г воды. Полученный цеолит подвергают третьему ионному обмену на катионы редкоземельных элементов при соотношении г-экв редкоземельных элементов и натрия, равном 1,0. Суспензию цеолита фильтруют и промывают свежей водой. Содержание оксидов редкоземельных элементов в цеолите составляет 14,3 мас.%. Остаточное содержание оксида натрия - 0,8 мас.%

Приготовление катализаторной композиции и формовку катализатора проводят, как в примере 1. Отличие заключается в условиях высокотемпературной прокалки катализатора в среде водяного пара.

Высокотемпературную прокалку катализатора проводят при температуре 750°С в течение 6 ч и парциальном давлении паров воды 0,05 атм. Решеточный модуль цеолита в готовом катализаторе составляет 15,7 при относительной кристалличности 91%. Содержание оксидов редкоземельных элементов в катализаторе составляет 2,9 мас.%

Предлагаемый способ позволяет достичь высокого решеточного модуля цеолита при сохранении его высокой относительной кристалличности.

Пример 6.

Приготовление цеолита проводят, как в примере 5. Отличие заключается в соотношении г-экв редкоземельных элементов и натрия в цеолите на втором ионном обмене. Соотношение г-экв редкоземельных элементов и натрия в цеолите на втором ионном обмене в данном примере поддерживают равным 0,1. Содержание оксидов редкоземельных элементов в цеолите составляет 1,3 мас.% Остаточное содержание оксида натрия в цеолите - 3,2 мас.%

Ультрастабилизацию цеолита и высокотемпературную прокалку катализатора в среде водяного пара проводят, как в примере 5. Решеточный модуль цеолита в готовом катализаторе составил 19,2 при относительной кристалличности 89%. Содержание оксидов редкоземельных элементов в катализаторе составляет 2,9 мас.%. Остаточное содержание оксида натрия в катализаторе 0,26 мас.%

При низких содержаниях оксидов редкоземельных элементов в цеолите и высоких температурах при прокалке катализатора в среде водяного пара получают цеолит с высоким решеточным модулем, но с пониженной относительной кристалличностью.

Пример 7. Приготовление цеолита проводят, как в примере 5. Отличие заключается в компонентном составе катализатора. Суспензии компонентов смешивают в таких пропорциях, чтобы композиция катализатора в пересчете на абсолютно сухое вещество имела следующий компонентный состав, мас.%:

цеолит20оксид алюминия из переосажденного гидроксида алюминия30бентонитовая глина22аморфный алюмосиликат28

Высокотемпературную прокалку катализатора в среде водяного пара проводят, как в примере 5. Решеточный модуль цеолита в готовом катализаторе составляет 12,4 при относительной кристалличности 89%.

Таким образом, увеличение содержания оксида алюминия в катализаторе уменьшает степень ультрастабилизации цеолита, но приводит к снижению кристалличности цеолита в готовом катализаторе.

Пример 8.

Приготовление цеолита проводят, как в примере 5. Отличие заключается в компонентном составе. Суспензии компонентов смешивают в таких пропорциях, чтобы композиция катализатора в пересчете на абсолютно сухое вещество имела следующий компонентный состав, мас.%:

цеолит20оксид алюминия из переосажденного гидроксида алюминия20бентонитовая глина35аморфный алюмосиликат25

Высокотемпературную прокалку катализатора в среде водяного пара проводят, как в примере 5. Решеточный модуль цеолита в готовом катализаторе составляет 14,2, относительная кристалличность цеолита - 93%.

Таким образом, увеличение содержания бентонитовой глины алюминия увеличивает степень ультрастабилизации и позволяет сохранить высокую кристалличность цеолита в готовом катализаторе.

Пример 9.

Приготовление цеолита проводят, как в примере 5. Отличие заключается в компонентном составе. Суспензии компонентов смешивают в таких пропорциях, чтобы композиция катализатора в пересчете на абсолютно сухое вещество имеет следующий компонентный состав, мас.%:

цеолит25оксид алюминия из переосажденного гидроксида алюминия20бентонитовая глина22аморфный алюмосиликат33

Высокотемпературную обработку катализатора в среде водяного пара проводят, как в примере 5. Решеточный модуль цеолита в готовом катализаторе - 12,4, относительная кристалличность цеолита - 82%. Содержание оксидов редкоземельных элементов в катализаторе составляет 3,0 мас.%.

Таким образом, увеличение содержания цеолита за счет снижения содержания аморфного алюмосиликата приводит к снижению кристалличности цеолита в готовом катализаторе.

Активность полученных образцов оценивают в крекинге гидроочищенного вакуумного газойля с пределами кипения 350-560°С при весовой скорости подачи сырья 30 ч-1, температуре крекинга 526°С, весовом соотношении катализатор: сырье, равном 4 и временем подачи сырья 30 с. Условия испытаний соответствуют ASTM D-3907. Активность при этом оценивают как степень превращения сырья в приведенных стандартных условиях. Катализаторы перед испытанием обрабатывают 100% водяным паром при температуре 760°С в течение 5 ч.

Химический состав катализатора и результаты испытаний активности приведены в таблице.

Заявляемый способ приготовления микросферического цеолитсодержащего катализатора крекинга позволяет получить высокоактивные катализаторы с ультрастабильным цеолитом, решеточный модуль цеолита при этом составляет от 5,5 до 20,0.

ТаблицаНомер примераСодержание оксида натрия, мас.%Содержание оксидов РЗЗ, мас.%Содержание оксида алюминия, мас.%Активность катализатора, мас.%10,531,8233,472,320,531,8233,469,430,421,9433,476,840,382,0633,479,450,312,8633,482,760,262,9033,479,670,292,8642,678,080,372,8635,578,890,383,0034,476,9

Похожие патенты RU2300420C2

название год авторы номер документа
МИКРОСФЕРИЧЕСКИЙ КАТАЛИЗАТОР ДЛЯ КРЕКИНГА НЕФТЯНЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2011
  • Глазов Александр Витальевич
  • Дмитриченко Олег Иванович
  • Короткова Наталья Владимировна
  • Горденко Владимир Иванович
  • Гурьевских Сергей Юрьевич
RU2473385C1
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА С НИЗКИМ СОДЕРЖАНИЕМ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ДЛЯ КРЕКИНГА НЕФТЯНЫХ ФРАКЦИЙ 2013
  • Белявский Олег Германович
  • Глазов Александр Витальевич
  • Короткова Наталья Владимировна
  • Горденко Владимир Иванович
  • Гурьевских Сергей Юрьевич
RU2509605C1
Способ приготовления катализатора крекинга с щелочноземельными элементами 2016
  • Доронин Владимир Павлович
  • Сорокина Татьяна Павловна
  • Потапенко Олег Валерьевич
  • Липин Петр Владимирович
  • Дмитриев Константин Игоревич
  • Белявский Олег Германович
  • Панов Александр Васильевич
  • Короткова Наталья Владимировна
  • Горденко Владимир Иванович
  • Гурьевских Сергей Юрьевич
  • Храпов Дмитрий Валерьевич
RU2621345C1
Способ приготовления ультрастабильного цеолита Y 2016
  • Доронин Владимир Павлович
  • Сорокина Татьяна Павловна
  • Потапенко Олег Валерьевич
  • Липин Петр Владимирович
  • Дмитриев Константин Игоревич
  • Белявский Олег Германович
  • Панов Александр Васильевич
  • Короткова Наталья Владимировна
  • Гурьевских Сергей Юрьевич
  • Храпов Дмитрий Валерьевич
RU2624307C1
СПОСОБ ПРИГОТОВЛЕНИЯ ЦЕОЛИТСОДЕРЖАЩЕГО КАТАЛИЗАТОРА ДЛЯ КРЕКИНГА НЕФТЯНЫХ ФРАКЦИЙ 1998
  • Бронфин И.Б.
  • Горденко В.И.
  • Гужелов А.И.
  • Доронин В.П.
  • Дуплякин В.К.
  • Коновалова В.П.
  • Сорокина Т.П.
  • Фомичев В.М.
RU2127632C1
КАТАЛИЗАТОР ДЛЯ ГЛУБОКОГО КРЕКИНГА НЕФТЯНЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2008
  • Доронин Владимир Павлович
  • Сорокина Татьяна Павловна
  • Белая Лилия Александровна
  • Липин Петр Владимирович
RU2365409C1
МИКРОСФЕРИЧЕСКИЙ БИЦЕОЛИТНЫЙ КАТАЛИЗАТОР ДЛЯ ПОВЫШЕНИЯ ОКТАНОВОГО ЧИСЛА БЕНЗИНА КРЕКИНГА ВАКУУМНОГО ГАЗОЙЛЯ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2011
  • Глазов Александр Витальевич
  • Дмитриченко Олег Иванович
  • Короткова Наталья Владимировна
  • Горденко Владимир Иванович
  • Гурьевских Сергей Юрьевич
RU2473384C1
Микросферический катализатор для крекинга нефтяных фракций и способ его приготовления 2020
  • Доронин Владимир Павлович
  • Сорокина Татьяна Павловна
  • Потапенко Олег Валерьевич
  • Липин Петр Владимирович
  • Дмитриев Константин Игоревич
  • Бобкова Татьяна Викторовна
RU2743935C1
Микросферический катализатор для повышения выхода бензина каталитического крекинга и способ его приготовления 2021
  • Доронин Владимир Павлович
  • Сорокина Татьяна Павловна
  • Потапенко Олег Валерьевич
  • Дмитриев Константин Игоревич
  • Липин Петр Владимирович
RU2789407C1
МИКРОСФЕРИЧЕСКИЙ КАТАЛИЗАТОР ДЛЯ СНИЖЕНИЯ СОДЕРЖАНИЯ СЕРЫ В БЕНЗИНЕ КРЕКИНГА И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2011
  • Глазов Александр Витальевич
  • Дмитриченко Олег Иванович
  • Короткова Наталья Владимировна
  • Горденко Владимир Иванович
  • Гурьевских Сергей Юрьевич
RU2472586C1

Реферат патента 2007 года СПОСОБ ПРИГОТОВЛЕНИЯ МИКРОСФЕРИЧЕСКОГО КАТАЛИЗАТОРА ДЛЯ КРЕКИНГА НЕФТЯНЫХ ФРАКЦИЙ

Изобретение относится к нефтеперерабатывающей промышленности, в частности к способу приготовления катализаторов крекинга. Описан способ приготовления микросферического катализатора крекинга, включающий проведение ионных обменов на катионы редкоземельных элементов и аммония на цеолите NaY, ультрастабилизацию цеолита в две стадии в среде водяного пара, смешение цеолита с компонентами матрицы и получением композиции, распылительную сушку полученной композиции из цеолита и компонентов матрицы с последующей прокалкой и получением катализатора. На первой стадии ультрастабилизацию цеолита проводят при температуре 550-650°С и парциальном давлении паров воды в диапазоне от 0,1 до 1,0 атм. На второй стадии ультрастабилизацию осуществляют после распылительной сушки при прокалке композиции из цеолита и компонентов матрицы при температуре 650-750°С и парциальном давлении паров воды в диапазоне от 0,05 до 0,3 атм. Способ позволяет получить цеолит с высоким решеточным модулем и высокой относительной кристалличностью. Технический результат - получение катализатора с высокой каталитической активностью. 5 з.п., ф-лы, 1 табл.

Формула изобретения RU 2 300 420 C2

1. Способ приготовления микросферического катализатора для крекинга нефтяных фракций, включающий проведение ионных обменов на катионы редкоземельных элементов и аммония на цеолите NaY, ультрастабилизацию цеолита в среде водяного пара, смешение цеолита с компонентами матрицы и получением композиции, распылительную сушку полученной композиции из цеолита и компонентов матрицы с последующей прокалкой и получением катализатора, отличающийся тем, что ультрастабилизацию цеолита проводят в две стадии: на первой стадии ультрастабилизацию цеолита проводят при температуре 550-650°С и парциальном давлении паров воды от 0,1 до 1,0 атм., а на второй стадии ультрастабилизацию осуществляют после распылительной сушки при прокалке композиции из цеолита и компонентов матрицы при температуре 650-750°С и парциальном давлении паров воды от 0,05 до 0,3 атм.2. Способ по п.1, отличающийся тем, что решеточный модуль цеолита на первой стадии получают в диапазоне от 5,5 до 7,5.3. Способ по п.1, отличающийся тем, что решеточный модуль цеолита на второй стадии регулируют в диапазоне от 5,5 до 20,0.4. Способ по п.1, отличающийся тем, что на первой стадии ультрастабилизации подвергают смешанную катион-декатионированную форму цеолита с содержанием оксидов редкоземельных элементов от 0,5 до 14,3 мас.% в пересчете на оксиды.5. Способ по п.1, отличающийся тем, что содержание оксидов редкоземельных элементов в композиции, состоящей из цеолита и компонентов матрицы катализатора, перед второй стадией ультрастабилизации поддерживают от 0,5 до 3,0 мас.% в пересчете на оксиды.6. Способ по п.1, отличающийся тем, что в качестве компонентов матрицы используют аморфный алюмосиликат, переосажденный гидроксид алюминия и бентонитовую глину.

Документы, цитированные в отчете о поиске Патент 2007 года RU2300420C2

СПОСОБ ПРИГОТОВЛЕНИЯ ЦЕОЛИТСОДЕРЖАЩЕГО КАТАЛИЗАТОРА ДЛЯ КРЕКИНГА НЕФТЯНЫХ ФРАКЦИЙ 1998
  • Бронфин И.Б.
  • Горденко В.И.
  • Гужелов А.И.
  • Доронин В.П.
  • Дуплякин В.К.
  • Коновалова В.П.
  • Сорокина Т.П.
  • Фомичев В.М.
RU2127632C1
КАТАЛИЗАТОР ДЛЯ КРЕКИНГА УГЛЕВОДОРОДОВ 1991
  • Хаджиев С.Н.
  • Яндиева Л.А.
  • Гайрбекова С.М.
  • Крюков О.В.
RU2021012C1
US 4826793 A, 02.05.1989
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫПРЯМИТЕЛЬНОГО ЭЛЕМЕНТА 0
SU256875A1

RU 2 300 420 C2

Авторы

Доронин Владимир Павлович

Сорокина Татьяна Павловна

Дуплякин Валерий Кузьмич

Даты

2007-06-10Публикация

2005-06-28Подача