Способ приготовления катализатора крекинга с щелочноземельными элементами Российский патент 2017 года по МПК B01J37/00 B01J37/30 B01J29/08 

Описание патента на изобретение RU2621345C1

Настоящее изобретение относится к области нефтеперерабатывающей и нефтехимической промышленности, а именно к способам приготовления катализаторов каталитического крекинга нефтяных фракций для производства олефинов С24 и высокооктанового бензина. В традиционном каталитическом крекинге, кроме высокооктанового бензина, легкого и тяжелого газойлей, образуются олефины С24, но их выход не превышает 12,0 мас.% (Sadeghbeigi R., Fluid catalytic cracking handbook: Design, Operation and Troubleshooting of FCC. - Second ed. - Gulf. Professional Publ., 2000. - P. 155). Низкий выход легких олефинов и невысокие октановые числа бензинов крекинга связаны с большим вкладом реакций перераспределения водорода на катализаторах с высоким содержанием оксидов редкоземельных элементов (РЗЭ) в катализаторе (более 1,5 мас.%).

Несмотря на высокое содержание оксидов РЗЭ, такие катализаторы недостаточно термостабильны в отношении их каталитических свойств.

Современные цеолитсодержащие катализаторы представляют собой композиционные материалы, состоящие из активного компонента - цеолита HP33Y, и матрицы, включающей связующие и наполнитель. Цеолит HP33Y для получения высокооктанового бензина и увеличения отбора легких олефинов используется в ультрастабильной форме, то есть с повышенным решеточным модулем цеолита.

Известен катализатор и способ получения катализатора крекинга на основе ультрастабильного цеолита типа Y, каолина, источников оксидов алюминия и кремния (US Patent №6114267, 2000). В указанном способе ультрастабилизацию цеолита осуществляют с применением гексафторсиликата аммония. Решеточный модуль цеолита при этом составил 12.5 и содержание редкоземельных элементов в цеолите менее 4,0 мас.%. Недостатком указанного способа является снижение кристалличности цеолита при взаимодействии с гексафторсиликатом аммония и низкая активность получаемого на основе такого цеолита катализатора.

Известен катализатор для уменьшения содержания серы в бензине для процесса каталитического крекинга (патент RU №2396304, 2010), в котором используется цеолит Y-типа, выбранный из группы, состоящей из HY, USY, REY, REUSY, CREY, CREUSY, MgUSY, ZnUSY, MnUSY цеолитов и их смесей, а также кислоту Льюиса в качестве компонента матрицы. Недостатком указанного катализатора является низкая термостабильность получаемого на основе такого цеолита катализатора.

Известен катализатор крекинга (US Patent №3835031, 1974), состав которого включает алюмосиликатную матрицу, содержащую глинозем от 10 до 50 мас. %, кристаллический цеолит от 0,1 до 10 мас.% и от 0,25 до 5,0 мас.% металлов группы IIА Периодической таблицы, присутствующих в оксидной форме и распределенных по поверхности матрицы. Предпочтительными металлами являются магний или смесь, содержащая по крайней мере 50 мол.% магния. Может также использоваться кальций, стронций или барий. Кристаллический алюмосиликат может быть фожазит, шабазит или X - или Y-цеолит и подходящие катионы РЗЭ, водорода или аммония, чтобы уменьшить содержание ионов натрия в катализаторе ниже 0,5 мас.%. Недостатком указанного катализатора является низкая активность из-за недостаточной термостабильности цеолитного компонента катализатора в такой матрице.

Известен катализатор каталитического крекинга без редкоземельных элементов (US №№2014021097, 2014021098), который включает цеолит, подкисленную соль кремния как связующего, соли магния, глины и материала матрицы. Катализатор каталитического крекинга имеет высокую площадь поверхности матрицы и является полезным в процессе каталитического крекинга, в частности, чтобы обеспечить увеличение каталитической активности и улучшенной селективностью по водороду и коксу без необходимости включения редкоземельных металлов. Недостатком указанного катализатора является недостаточная термостабильность цеолитного компонента катализатора в такой матрице.

Известен способ приготовления ультрастабильного цеолита для катализатора крекинга (US Patent №20110224067), в котором на первой стадии приготовления цеолита проводят ультрастабилизацию аммонийной формы цеолита, а на второй стадии - ионный обмен на катионы аммония в гидротермальных условиях при температурах от 100 до 200°С. Затем проводят третий ионный обмен на катионы редкоземельных элементов. При получении катализатора из такого цеолита содержание редкоземельных элементов в катализаторе составляло от 0,5 до 10 мас.%. Недостатком указанного способа является снижение кристалличности цеолита при его гидротермальной обработке при высоких температурах.

Известен катализатор (CN №103159227, аналог US Patent №2015175432) на основе ультрастабильного цеолита, содержащего от 0,5 до 5,0 мас.% оксида магния, от 1,0 до 20 мас.% оксидов РЗЭ и не более 1,2 мас.% оксида натрия. Недостатком предлагаемого катализатора является низкая термостабильность цеолита, кристалличность которого составляет от 46 до 63% от первоначального.

Наиболее близким является способ приготовления катализатора крекинга с низким содержанием оксидов РЗЭ (RU №2509605, 2013), в котором проводят двухстадийную ультрастабилизацию цеолита водяным паром, ионные обмены катионов натрия в цеолите на катионы аммония и РЗЭ с получением цеолита с содержанием оксида натрия не более 0,6 мас. % и оксидов РЗЭ от 0,5 до 5,5 мас.%. Недостатком указанного способа приготовления катализатора крекинга также является низкая термостабильность катализатора в отношении его каталитических свойств.

Целью настоящего изобретения является получение катализатора крекинга с повышенной термостабильностью в отношении его каталитических свойств.

Предлагаемый способ приготовления катализатора крекинга включает проведение ионных обменов на катионы редкоземельных элементов и аммония в цеолите NaY, две стадии ультрастабилизации цеолита в среде водяного пара, смешение цеолита с матрицей, в качестве компонентов которой используют бентонитовую глину, гидроксид алюминия и аморфный алюмосиликат, получение композиции, распылительную сушку полученной композиции с последующей прокалкой и получением катализатора, причем перед первой стадией ультрастабилизации дополнительно проводят ионный обмен катионов натрия в цеолите на катионы магния или катионы кальция без промежуточной фильтрации, с получением цеолита Y с содержанием оксида натрия не более 0,6 мас.%; оксидов редкоземельных элементов от 0,5 до 5,5 мас.%; оксида магния от 0,5 до 4,0 мас.% или оксида кальция от 1,0 до 7,0 мас. %, и содержания в катализаторе оксидов редкоземельных элементов от 0,1 до 1,1 мас.%; оксида натрия менее 0,23 мас.%; оксида магния из цеолитного компонента от 0,1 до 0,8 мас.% или оксида кальция из цеолитного компонента от 0,2 до 1,4 мас. %.

Способ приготовления цеолита заключается в осуществлении следующих стадий:

- ионный обмен катионов натрия в цеолите на катионы аммония при соотношении г-экв катионов аммония и натрия 1,0-1,2;

- фильтрация цеолита и второй ионный обмен катионов натрия в цеолите на катионы аммония при соотношении г-экв катионов аммония и остаточного натрия 1,8-2,2;

- фильтрация цеолита и ионный обмен катионов натрия в цеолите на катионы магния или кальция при соотношении г-экв катионов магния или кальция и остаточного натрия 1,0-2,0;

- ультрастабилизация цеолита в среде водяного пара для увеличения решеточного модуля цеолита с 4,4-4,8 до 5,5-5,8;

- ионный обмен катионов натрия в цеолите на катионы РЗЭ при соотношении г-экв катионов РЗЭ и остаточного натрия 0,5-1,0;

- вторая ультрастабилизация цеолита в среде водяного пара для увеличения решеточного модуля цеолита с 5,5-5,8 до 6,5-7,3;

- ионный обмен катионов натрия в цеолите на катионы аммония при соотношении г-экв катионов аммония и остаточного натрия 2,0-2,5.

Способ приготовления катализатора заключается в следующем. Бентонитовую глину подвергают обработке азотнокислым аммонием по методу ионного обмена для снижения содержания оксида натрия. После обработки остаточное содержание оксида натрия в глине менее 0,2 мас.%. Суспензию гидроксида алюминия обрабатывают концентрированной азотной кислотой. Затем смешивают суспензии бентонитовой глины и гидроксида алюминия и аморфного алюмосиликата. Суспензию ультрастабильного цеолита Y добавляют в приготовленную композицию бентонитовая глина - гидроксид алюминия - аморфный алюмосиликат. Смесь фильтруют, формуют в микросферические частицы с размером менее 0,25 мм. Полученный катализатор высушивают и прокаливают в среде водяного пара при температурах 680-740°С. Решеточный модуль цеолита в катализаторе составляет от 8,0 до 12,0.

Условия реакции для оценки активности образцов катализатора следующие: температура крекинга 527°С, весовое соотношение катализатор/сырье 4,0, время подачи сырья 30 с. Условия испытаний соответствуют ASTM D-3907. В качестве сырья использовался гидроочищенный вакуумный газойль. Катализаторы предварительно подвергли термопаровой стабилизации при температуре 760-788°С в течение 5-9 ч в среде 100% водяного пара в соответствии с ASTM D 4463.

В таблице приведены данные по активности катализаторов после различных условий термопаровой стабилизации, содержание оксидов натрия и РЗЭ, а также содержание оксидов кальция и магния из цеолитного компонента. Общее содержание оксидов магния или кальция не приводится из-за содержания этих оксидов в бентонитовой глине различного химического состава.

Для иллюстрации изобретения приведены следующие примеры:

Пример 1. Описывает способ приготовления катализатора по прототипу.

Способ приготовления цеолита заключается в осуществлении следующих стадий:

- ионный обмен катионов натрия в цеолите на катионы аммония при соотношении г-экв катионов аммония и натрия 1,0;

- фильтрация цеолита и второй ионный обмен катионов натрия в цеолите на катионы аммония при соотношении г-экв катионов аммония и остаточного натрия 1,8;

- фильтрация цеолита и ультрастабилизация цеолита в среде водяного пара для увеличения решеточного модуля цеолита с 4,8 до 5,5;

- ионный обмен катионов натрия в цеолите на катионы РЗЭ при соотношении г-экв катионов РЗЭ и остаточного натрия 1,0 с получением содержания оксидов РЗЭ в цеолите 5,5 мас.%;

- вторая ультрастабилизация цеолита в среде водяного пара для увеличения решеточного модуля цеолита с 5,5 до 6,5;

- ионный обмен катионов натрия в цеолите на катионы аммония при соотношении г-экв катионов аммония и остаточного натрия 2,0, при этом обеспечивается остаточное содержание оксида натрия в цеолите 0,6 мас. %.

Катализатор готовят способом, описанным выше. Полученный катализатор высушивают и прокаливают в среде водяного пара при температуре 720°С. Решеточный модуль цеолита в катализаторе составляет 8,0. Содержание ультрастабильного цеолита в композиции катализатора составляет 20 мас.%, бентонитовой глины 22 мас. %, оксида алюминия из переосажденного гидроксида алюминия 20 мас.%, аморфного алюмосиликата 38 мас.%. Содержание в катализаторе оксидов редкоземельных элементов составляет 1,1 мас.% и оксида натрия в катализаторе 0,22 мас.%.

Пример 2. Характеризует предлагаемый способ приготовления катализатора. Приготовление цеолита проводят, как в примере 1, отличие заключается в том, что перед первой ультрастабилизацией цеолита проводят ионный обмен катионов натрия в цеолите на катионы магния при соотношении г-экв магния и остаточного натрия в цеолите равном 1,5, а ионный обмен катионов натрия на катионы РЗЭ проводят при соотношении г-экв РЗЭ и остаточного натрия равном 0,12. Приготовление катализатора проводят, как в примере 1. Содержание оксида магния в цеолите составляет 4,0 мас.%, оксидов РЗЭ 0,5 мас.%, оксида натрия 0,6 мас.%. Содержание в катализаторе оксидов редкоземельных элементов составляет 0,1 мас.%, оксида натрия 0,21 мас.% оксида магния из цеолитного компонента 0,8 мас.%.

Пример 3. Аналогичен примеру 2, отличие заключается в том, что перед первой ультрастабилизацией цеолита проводят ионный обмен катионов натрия в цеолите на катионы кальция при соотношении г-экв кальция и остаточного натрия в цеолите 2,0, а ионный обмен катионов натрия на катионы РЗЭ проводят при соотношении г-экв РЗЭ и остаточного натрия равном 0,35. Содержание оксида кальция в цеолите составляет 7,0 мас.%, оксидов РЗЭ 1,5 мас. %, оксида натрия 0,5 мас.%. Содержание в катализаторе оксидов редкоземельных элементов составляет 0,3 мас.%, оксида натрия 0,20 мас.%, оксида кальция из цеолитного компонента 1,4 мас.%.

Пример 4. Аналогичен примеру 3, отличие заключается в том, что перед первой ультрастабилизацией цеолита проводят ионный обмен катионов натрия в цеолите на катионы кальция при соотношении г-экв кальция и остаточного натрия в цеолите 0,3, а ионный обмен катионов натрия на катионы РЗЭ проводят при соотношении г-экв РЗЭ и остаточного натрия равном 0,5. Содержание оксида кальция в цеолите составляет 1,0 мас. %, оксидов РЗЭ 2,5 мас. %, оксида натрия 0,6 мас.%. Содержание в катализаторе оксидов редкоземельных элементов составляет 0,5 мас.%, оксида натрия 0,19 мас.%, оксида кальция из цеолитного компонента 0,2 мас.%.

Пример 5. Приготовление цеолита проводят, как в примере 2, отличие заключается в том, что перед первой ультрастабилизацией цеолита проводят ионный обмен катионов натрия в цеолите на катионы магния при соотношении г-экв магния и остаточного натрия в цеолите 1,0, а ионный обмен катионов натрия на катионы РЗЭ проводят при соотношении г-экв РЗЭ и остаточного натрия равном 0,9. Содержание оксида магния в цеолите составляет 0,5 мас. %, оксидов РЗЭ 5,5 мас. %, оксида натрия 0,51 мас. %. Приготовление катализатора проводят, как в примере 1. Содержание в катализаторе оксидов редкоземельных элементов составляет 1,1 мас. %, оксида натрия 0,18 мас. %, оксида магния из цеолитного компонента 0,1 мас. %.

Как видно из приведенной таблицы, предлагаемый способ приготовления катализаторов крекинга (примеры 2-5) обеспечивает значительное увеличение термостабильности катализаторов в отношении их каталитических свойств.

Похожие патенты RU2621345C1

название год авторы номер документа
МИКРОСФЕРИЧЕСКИЙ КАТАЛИЗАТОР ДЛЯ КРЕКИНГА НЕФТЯНЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2011
  • Глазов Александр Витальевич
  • Дмитриченко Олег Иванович
  • Короткова Наталья Владимировна
  • Горденко Владимир Иванович
  • Гурьевских Сергей Юрьевич
RU2473385C1
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА С НИЗКИМ СОДЕРЖАНИЕМ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ДЛЯ КРЕКИНГА НЕФТЯНЫХ ФРАКЦИЙ 2013
  • Белявский Олег Германович
  • Глазов Александр Витальевич
  • Короткова Наталья Владимировна
  • Горденко Владимир Иванович
  • Гурьевских Сергей Юрьевич
RU2509605C1
Способ приготовления ультрастабильного цеолита Y 2016
  • Доронин Владимир Павлович
  • Сорокина Татьяна Павловна
  • Потапенко Олег Валерьевич
  • Липин Петр Владимирович
  • Дмитриев Константин Игоревич
  • Белявский Олег Германович
  • Панов Александр Васильевич
  • Короткова Наталья Владимировна
  • Гурьевских Сергей Юрьевич
  • Храпов Дмитрий Валерьевич
RU2624307C1
СПОСОБ ПРИГОТОВЛЕНИЯ МИКРОСФЕРИЧЕСКОГО КАТАЛИЗАТОРА ДЛЯ КРЕКИНГА НЕФТЯНЫХ ФРАКЦИЙ 2005
  • Доронин Владимир Павлович
  • Сорокина Татьяна Павловна
  • Дуплякин Валерий Кузьмич
RU2300420C2
КАТАЛИЗАТОР ДЛЯ ОСУЩЕСТВЛЕНИЯ РЕАКЦИЙ МЕЖМОЛЕКУЛЯРНОГО ПЕРЕНОСА ВОДОРОДА И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2015
  • Доронин Владимир Павлович
  • Сорокина Татьяна Павловна
  • Белявский Олег Германович
  • Глазов Александр Витальевич
  • Храпов Дмитрий Валерьевич
  • Короткова Наталья Владимировна
RU2599720C1
Микросферический катализатор для крекинга нефтяных фракций и способ его приготовления 2020
  • Доронин Владимир Павлович
  • Сорокина Татьяна Павловна
  • Потапенко Олег Валерьевич
  • Липин Петр Владимирович
  • Дмитриев Константин Игоревич
  • Бобкова Татьяна Викторовна
RU2743935C1
Микросферический катализатор для повышения выхода бензина каталитического крекинга и способ его приготовления 2021
  • Доронин Владимир Павлович
  • Сорокина Татьяна Павловна
  • Потапенко Олег Валерьевич
  • Дмитриев Константин Игоревич
  • Липин Петр Владимирович
RU2789407C1
МИКРОСФЕРИЧЕСКИЙ БИЦЕОЛИТНЫЙ КАТАЛИЗАТОР ДЛЯ ПОВЫШЕНИЯ ОКТАНОВОГО ЧИСЛА БЕНЗИНА КРЕКИНГА ВАКУУМНОГО ГАЗОЙЛЯ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2011
  • Глазов Александр Витальевич
  • Дмитриченко Олег Иванович
  • Короткова Наталья Владимировна
  • Горденко Владимир Иванович
  • Гурьевских Сергей Юрьевич
RU2473384C1
Металлоустойчивый катализатор крекинга и способ его приготовления 2021
  • Доронин Владимир Павлович
  • Сорокина Татьяна Павловна
  • Потапенко Олег Валерьевич
  • Дмитриев Константин Игоревич
  • Ведерников Олег Сергеевич
  • Клейменов Андрей Владимирович
  • Овчинников Кирилл Александрович
  • Андреева Анна Вячеславовна
  • Никитин Александр Анатольевич
  • Храпов Дмитрий Валерьевич
  • Есипенко Руслан Валерьевич
RU2760552C1
Микросферический катализатор для крекинга нефтяных фракций 2018
  • Доронин Владимир Павлович
  • Сорокина Татьяна Павловна
  • Потапенко Олег Валерьевич
  • Липин Петр Владимирович
  • Дмитриев Константин Игоревич
  • Бобкова Татьяна Викторовна
RU2673811C1

Реферат патента 2017 года Способ приготовления катализатора крекинга с щелочноземельными элементами

Изобретение относится к области нефтеперерабатывающей и нефтехимической промышленности, а именно к способам приготовления катализаторов каталитического крекинга нефтяных фракций. Способ приготовления катализатора крекинга включает проведение ионных обменов на катионы редкоземельных элементов и аммония в цеолите NaY, две стадии ультрастабилизации цеолита в среде водяного пара, смешение цеолита с матрицей, получение композиции, распылительную сушку полученной композиции с последующей прокалкой и получением катализатора. Матрица в качестве компонентов включает бентонитовую глину, гидроксид алюминия и аморфный алюмосиликат. При этом перед первой стадией ультрастабилизации проводят ионный обмен катионов натрия в цеолите на катионы магния или катионы кальция без промежуточной фильтрации. Полученный цеолит Y содержит, в мас.%: оксид натрия не более 0,6, оксиды редкоземельных элементов 0,5-5,5, оксид магния 0,5 - 4,0 или оксида кальция 1,0-7,0. Катализатор содержит, в мас.%: оксиды редкоземельных элементов 0,1-1,1, оксид натрия менее 0,23, оксид магния из цеолитного компонента 0,1-0,8 или оксид кальция из цеолитного компонента 0,2-1,4 мас.%. Технический результат - увеличение термостабильности катализаторов в отношении их каталитических свойств. 5 пр., 1 табл.

Формула изобретения RU 2 621 345 C1

Способ приготовления катализатора крекинга, включающий проведение ионных обменов на катионы редкоземельных элементов и аммония в цеолите NaY, две стадии ультрастабилизации цеолита в среде водяного пара, смешение цеолита с матрицей, в качестве компонентов которой используют бентонитовую глину, гидроксид алюминия и аморфный алюмосиликат, получение композиции, распылительную сушку полученной композиции с последующей прокалкой и получением катализатора, отличающийся тем, что перед первой стадией ультрастабилизации проводят ионный обмен катионов натрия в цеолите на катионы магния или катионы кальция с получением цеолита Y с содержанием оксида натрия не более 0,6 мас.%; оксидов редкоземельных элементов от 0,5 до 5,5 мас.%; оксида магния от 0,5 до 4,0 мас.% или оксида кальция от 1,0 до 7,0 мас.%, и содержания в катализаторе оксидов редкоземельных элементов от 0,1 до 1,1 мас.%; оксида натрия менее 0,23 мас.%; оксида магния из цеолитного компонента от 0,1 до 0,8 мас. или оксида кальция из цеолитного компонента от 0,2 до 1,4 мас.%.

Документы, цитированные в отчете о поиске Патент 2017 года RU2621345C1

СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА С НИЗКИМ СОДЕРЖАНИЕМ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ДЛЯ КРЕКИНГА НЕФТЯНЫХ ФРАКЦИЙ 2013
  • Белявский Олег Германович
  • Глазов Александр Витальевич
  • Короткова Наталья Владимировна
  • Горденко Владимир Иванович
  • Гурьевских Сергей Юрьевич
RU2509605C1
СПОСОБ ПРИГОТОВЛЕНИЯ МИКРОСФЕРИЧЕСКОГО КАТАЛИЗАТОРА ДЛЯ КРЕКИНГА НЕФТЯНЫХ ФРАКЦИЙ 2005
  • Доронин Владимир Павлович
  • Сорокина Татьяна Павловна
  • Дуплякин Валерий Кузьмич
RU2300420C2
Способ приготовления лака 1924
  • Петров Г.С.
SU2011A1
СПОСОБ ПРИГОТОВЛЕНИЯ ЦЕОЛИТСОДЕРЖАЩЕГО КАТАЛИЗАТОРА ДЛЯ КРЕКИНГА НЕФТЯНЫХ ФРАКЦИЙ 1998
  • Бронфин И.Б.
  • Горденко В.И.
  • Гужелов А.И.
  • Доронин В.П.
  • Дуплякин В.К.
  • Коновалова В.П.
  • Сорокина Т.П.
  • Фомичев В.М.
RU2127632C1
CN 103159227 А, 19.06.2013.

RU 2 621 345 C1

Авторы

Доронин Владимир Павлович

Сорокина Татьяна Павловна

Потапенко Олег Валерьевич

Липин Петр Владимирович

Дмитриев Константин Игоревич

Белявский Олег Германович

Панов Александр Васильевич

Короткова Наталья Владимировна

Горденко Владимир Иванович

Гурьевских Сергей Юрьевич

Храпов Дмитрий Валерьевич

Даты

2017-06-02Публикация

2016-08-03Подача