СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО НОСИТЕЛЯ КАТАЛИЗАТОРА Российский патент 2007 года по МПК B01J21/18 B01J32/00 B01J37/08 B01J37/12 

Описание патента на изобретение RU2306977C1

Изобретение относится к области пористых углеродных материалов, которые используются в процессах гидроочистки, гидрирования углеводородов и синтеза углеводородов по Фишеру-Тропшу.

Интенсивное развитие исследований по созданию новых высокоэффективных процессов катализа и адсорбции требует расширения номенклатуры пористых носителей, в том числе углеродных носителей, обладающих высокой сорбирующей способностью.

Известны углеродные носители [Авторское свидетельство СССР 1352707 A1 B01J 37/10, 35/10, 21/18. Опубл. 10.07.1996], получаемые уплотнением сажи пироуглеродом, образующимся при разложении углеводородов, и последующей обработкой сформировавшегося материала паровоздушной смесью.

Недостатком этих методов является невысокая стабильность по отношению к физико-механическому воздействию.

Наиболее близким техническим решением по достигаемому эффекту является Авторское свидетельство СССР 1453682 A1 B01J 37/08, 21/18, 32/00. Опубл. 10.09.1996. Согласно ему углеродный материал получают путем обработки сажи газообразными углеводородами при перемешивании и температуре 750-1200°С до образования уплотненного углеродного материала с последующей его обработкой паровоздушной смесью.

Недостатком этого метода является невысокая сорбционная способность. Способность такого материала сорбировать из водного раствора метиловый оранжевый составила ˜100 мг/г.

Техническим результатом изобретения является увеличение сорбционной способности углеродного материала.

Данный технический результат достигается перемешиванием углеродного материала, в качестве которого используют предварительно деметаллизированные углеродные нановолокна, с газообразными углеводородами при температуре 750-1200°С до увеличения массы в 1,8÷2,5 раза с последующим окислением образовавшегося уплотненного материала диоксидом углерода до степени окисления 40-65%.

Диоксид углерода селективно окисляет только деметаллизированные углеродные нановолокна. При окислении уплотненного углеродного материала до степени окисления 40-65% происходит практически полное окисление углеродных нановолокон. Использование в качестве исходного материала предварительно деметаллизированных углеродных нановолокон и диоксида углерода - в качестве окисляющего агента - позволяет получить пористый углеродный носитель с большим объемом пористого пространства и большей сорбирующей способностью.

Деметаллизированные углеродные нановолокна описаны в работе Французова В.К., Пешнева Б.В., Николаева А.И. и Асиловой Н.Ю. «Влияние содержания железа в волокнистом углероде на скорость его образования». Химическая промышленность, 1997, №11, с.737-739.

Примеры, иллюстрирующие изобретение.

Пример 1.

В кварцевый реактор загружают ˜0,5 г предварительно деметаллизированных углеродных нановолокон с удельной адсорбционной поверхностью 170 м2/г. Реактор продувают инертным газом (азотом) и нагревают до температуры 750°С. По достижении указанной температуры, при непрерывном перемешивании, в реактор подают пропан-бутановую газовую смесь с расходом 50 мл/мин. Термическое разложение пропан-бутановой газовой смеси продолжают до достижения массы образца ˜1 г (100% увеличения массы). После уплотнения деметаллизированных углеродных нановолокон пропан-бутановую газовую смесь заменяют диоксидом углерода. Окисление материала продолжается до тех пор, пока убыль массы (степень окисления) не составит 50% (˜0,5 г).

Сорбционная способность полученного углеродного материала (по метиловому оранжевому, из водного раствора) составила 197 мг/г.

Физико-механическому воздействию носитель подвергали по примеру прототипа. Сорбционная способность углеродного материала после физико-механического воздействия составила 180 мг/г, т.е. снизилась на 8,6% по сравнению с первоначальной величиной.

Пример 2.

В кварцевый реактор загружают ˜0,5 г предварительно деметаллизированных углеродных нановолокон с удельной адсорбционной поверхностью 170 м2/г. Реактор продувают инертным газом (аргоном) и нагревают до температуры 1200°С. По достижении указанной температуры в реактор, при постоянном перемешивании, подают пропан-бутановую газовую смесь с расходом 50 мл/мин. Термическое разложение пропан-бутановой газовой смеси продолжают до достижения массы образца ˜1,25 г (150% увеличения массы). После уплотнения деметаллизированных углеродных нановолокон пропан-бутановую смесь заменяют диоксидом углерода. Окисление материала продолжается до тех пор, пока степень окисления не составит 40%.

Результаты определения сорбционной емкости полученного углеродного материала до и после физико-механического воздействия представлены в таблице.

Пример 3.

В кварцевый реактор загружают ˜0,5 г предварительно деметаллизированных углеродных нановолокон с удельной адсорбционной поверхностью 170 м2/г. Реактор продувают инертным газом (азотом или аргоном) и нагревают до температуры 900°С. По достижении указанной температуры в реактор, при постоянном перемешивании, подают пропан-бутановую газовую смесь с расходом 50 мл/мин. Термическое разложение пропан-бутановой газовой смеси продолжают до достижения массы образца ˜0,9 г (80% увеличения массы). После уплотнения углеродных нановолокон пропан-бутановую газовую смесь заменяют диоксидом углерода. Окисление материала продолжается до тех пор, пока убыль массы не составит 65% (˜0,6 г).

Результаты определения сорбционной емкости полученного углеродного материала до и после физико-механического воздействия представлены в таблице.

Пример 4.

Эксперимент проводили по методике примера 1. Отличие заключалось в том, что углеродные нановолокна не подвергались предварительной деметаллизации.

Результаты определения сорбционной емкости полученного углеродного материала до и после физико-механического воздействия представлены в таблице.

Пример 5.

Эксперимент проводили по методике примера 1. Отличие заключалось в том, что степень окисления составляла 10%.

Результаты определения сорбционной емкости полученного углеродного материала до и после физико-механического воздействия представлены в таблице.

Пример 6.

Эксперимент проводили по методике примера 1. Отличие заключалось в том, что термическое разложение пропан-бутановой смеси продолжали до увеличения массы образца на 20%.

Результаты определения сорбционной емкости полученного углеродного материала до и после физико-механического воздействия представлены в таблице.

Таблица
Способность углеродных материалов сорбировать метиловый оранжевый из водного раствора
Углеродный материалСорбционная способность, мг/гПотеря сорбционной способности, %ИсходнаяПосле физико-механической обработкиПрототип˜100Не определялась-По примеру 11971808,6По примеру 21811649,5По примеру 31701577,9По примеру 41018119,3По примеру 5181611,3По примеру 614012014,2

Из сопоставительного анализа прототипа и предлагаемого нами технического решения видно, что сорбционная емкость материала повысилась в 1,7÷2 раза при сохранении стабильности образца к физико-механическому воздействию по сравнению с прототипом.

Похожие патенты RU2306977C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО НОСИТЕЛЯ КАТАЛИЗАТОРА 2006
  • Пешнев Борис Владимирович
  • Николаев Александр Игоревич
  • Эстрин Роман Исакович
  • Каратаева Дарья Сергеевна
  • Жеребцова Елена Александровна
  • Варигина Юлия Александровна
RU2306976C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО УГЛЕРОДНОГО МАТЕРИАЛА 2005
  • Суровикин Юрий Витальевич
  • Суровикин Виталий Федорович
  • Цеханович Марк Соломонович
RU2303568C2
СПОСОБ ИЗГОТОВЛЕНИЯ ДЛИННЫХ ОРИЕНТИРОВАННЫХ ЖГУТОВ УГЛЕРОДНЫХ НАНОВОЛОКОН 2009
  • Мордкович Владимир Зальманович
  • Караева Аида Разимовна
  • Заглядова Светлана Вячеславовна
  • Маслов Игорь Александрович
  • Дон Алексей Константинович
RU2393276C1
УГЛЕРОДНОЕ НАНОВОЛОКНО И СПОСОБ ПОЛУЧЕНИЯ МНОГОСТЕННЫХ УГЛЕРОДНЫХ НАНОТРУБОК 2014
  • Предтеченский Михаил Рудольфович
RU2567628C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОТРУБОК 2007
  • Александров Андрей Алексеевич
  • Баронин Игорь Васильевич
  • Малых Александр Васильевич
  • Раков Эдуард Григорьевич
RU2338686C1
МЕТАЛЛОКСИДНЫЙ КАТАЛИЗАТОР ДЛЯ ВЫРАЩИВАНИЯ ПУЧКОВ УГЛЕРОДНЫХ НАНОТРУБОК ИЗ ГАЗОВОЙ ФАЗЫ 2010
  • Ткачев Алексей Григорьевич
  • Мележик Александр Васильевич
RU2427423C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОВОЛОКОН 2010
  • Стрельцов Иван Анатольевич
  • Бауман Юрий Иванович
  • Мишаков Илья Владимирович
  • Ведягин Алексей Анатольевич
  • Буянов Роман Алексеевич
RU2456234C2
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОСТРУКТУРИРОВАННЫХ ЭЛЕКТРОДОВ ДЛЯ ПРОТОЧНОЙ ВАНАДИЕВОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ 2021
  • Воропай Александр Николаевич
  • Ильина Мария Николаевна
  • Комаров Вячеслав Александрович
  • Горячева Татьяна Вячеславовна
RU2791602C1
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ТРУБ 2012
  • Петухова Евгения Спартаковна
  • Попов Савва Николаевич
  • Саввинова Мария Евгеньевна
  • Соколова Марина Дмитриевна
  • Соловьева Светлана Владимировна
  • Морова Лилия Ягьяевна
  • Токарева Ирина Вадимовна
  • Мишаков Илья Владимирович
RU2505563C1
БИОКАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ИНВЕРТНОГО СИРОПА С ИСПОЛЬЗОВАНИЕМ ЭТОГО КАТАЛИЗАТОРА 2011
  • Коваленко Галина Артемьевна
  • Перминова Лариса Валентиновна
  • Мосеенков Сергей Иванович
  • Кузнецов Владимир Львович
RU2451546C1

Реферат патента 2007 года СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО НОСИТЕЛЯ КАТАЛИЗАТОРА

Изобретение относится к области пористых углеродных материалов, а конкретно к углеродным носителям для катализаторов и сорбентам. Описан способ получения углеродного носителя катализатора перемешиванием углеродного материала с газообразными углеводородами при температуре 750÷1200°С до увеличения его массы в 2÷2,5 раза с последующим окислением образовавшегося уплотненного материала, причем в качестве исходного углеродного материала используют предварительно деметаллизированные углеродные нановолокна. Техническим результатом изобретения является увеличение сорбционной способности углеродного материала. 1 табл.

Формула изобретения RU 2 306 977 C1

Способ получения углеродного носителя катализатора перемешиванием углеродного материала с газообразными углеводородами при температуре 750÷1200°С с последующим окислением образовавшегося уплотненного материала, отличающийся тем, что в качестве исходного углеродного материала используют предварительно деметаллизированные углеродные нановолокна, перемешивание ведут до увеличения массы материала в 1,8-2,5 раза, а окисление проводят диоксидом углерода до степени окисления 40-65%.

Документы, цитированные в отчете о поиске Патент 2007 года RU2306977C1

RU 1453682 A1, 10.09.1996
RU 1538326 A2, 10.09.1996
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО НОСИТЕЛЯ ДЛЯ КАТАЛИЗАТОРОВ 2004
  • Суровикин Юрий Витальевич
  • Суровикин Виталий Федорович
  • Цеханович Марк Соломонович
  • Лихолобов Владимир Александрович
RU2268774C1
US 5488023 A1, 30.01.1996
Устройство для измерения временных параметров дыхания 1987
  • Алейников Николай Николаевич
  • Романов Вениамин Вениаминович
  • Стольберг Борис Моисеевич
  • Чувикин Александр Васильевич
SU1553052A1
US 6841509 В1, 11.05.2005
В.К.ФРАНЦУЗОВ и др
«Влияние содержания железа в волокнистом углероде на скорость его образования»
Хим
промышл., 1997, №11, с.737-739.

RU 2 306 977 C1

Авторы

Пешнев Борис Владимирович

Николаев Александр Игоревич

Эстрин Роман Исакович

Пилипейко Андрей Юрьевич

Каратаева Дарья Сергеевна

Даты

2007-09-27Публикация

2006-05-24Подача