СПОСОБ РАЗДЕЛЕНИЯ ХИРАЛЬНЫХ СУЛЬФОКСИДОВ С ПОМОЩЬЮ ЭНАНТИОСЕЛЕКТИВНОЙ ХРОМАТОГРАФИИ Российский патент 2007 года по МПК B01J20/29 C07C317/00 C07B57/00 

Описание патента на изобретение RU2310505C1

Изобретение относится к области органической химии, а именно к получению хиральных сульфоксидов, которые широко применяются в синтезе хиральных органических соединений, в том числе биологически активных соединений /Прилежаева Е.Н. Сульфоны и сульфоксиды в полном синтезе биологически активных природных соединений. // Успехи химии, 2000, Т.69, С.403-446/.

Основным подходом к получению хиральных сульфоксидов является каталитическое асимметрическое окисление тиоэфиров /Inmaculada F., Noureddine К. Recent Bevelopments in the Synthesis and Utilization of Chiral Sulfoxides // Chem. Rev., 2003, v.103, p.3651-3705/. Известные каталитические системы не дают 100%-ной энантиоселективности, и, следовательно, существует проблема очистки хиральных сульфоксидов от нежелательных примесей меньшего энантиомера.

Разработка методов разделения смесей энантиомерных сульфоксидов имеет большое значение для органической химии и фармацевтической промышленности /Алленмарк С. Хроматографическое разделение энантиомеров. //М.: Мир, 1991/. Классические методы разделения оптических изомеров основаны на получении диастереомерных солей и разделении последних кристаллизацией или с помощью колоночной хроматографии. Существенным недостатком таких методов является необходимость использования стехиометрических количеств оптически активного агента, кроме того, разделение, как правило, сопровождается потерей части вещества, не говоря уже о том, что данные подходы требуют разработки специальных методик в каждом отдельном случае и применимы лишь для узкого круга соединений.

Поэтому хроматографическое разделение с применением хиральной неподвижной фазы представляет значительный интерес.

В ряде работ сообщается об успешном разделении энантиомерных сульфоксидов методами жидкостной и газовой хроматографии на различных хиральных неподвижных фазах, в основном полисахаридной природы /US 5641404, B01D 15/08, C07B 57/00, 24.06.1997; US 5149426, B01J 20/32, С07В 57/00, 22.09.1992/. Однако подобные сорбенты применяются лишь для аналитических разделений. Напротив, о препаративном хроматографическом разделении хиральных сульфоксидов ничего не известно.

В патентной литературе есть упоминания о применении неорганических полисилоксанах, модифицированных иммобилизованными хиральными комплексами переходных металлов, для хроматографического разделения энантиомерных смесей /DE 4115291, B01J 20/32, C07B 57/00, 12.11.1992/. Также для аналитических разделений применялся хиральный композитный пористый материал, полученный путем модификации цеолита Na-Y /WO 2005066074 A1, 07.01.2004/. Примеров же использования пористых гомохиральных координационных полимеров для хроматографического разделения энантиомеров не описано.

В работе /Dybtsev D.N., Nuzhdin A.L., Chun H., Bryliakov K.P., Taisi E.P., Fedin V.P., Kim K. A Homochiral Metal-Organic Material with Permanent Porosity, Enantioselective Sorption Properties, and Catalytic Activity // Angew. Chem. Int. Ed., 2006, v.45, p.916-920/ нами представлен новый цинк-органический гомохиральный материал состава [Zn2BDC·(L-Lac)·DMF]·(DMF) (в дальнейшем обозначенный 1·(DMF)), где: BDC - дианион терефталевой кислоты, L-Lac - дианион молочной кислоты, DMF - диметилформамид. Соединение было синтезировано из доступных, оптически чистых реагентов с высоким выходом и не требует дополнительной очистки. Ионы Zn2+ и лактатные лиганды формируют полимерные хиральные цепи, играющие роль вторичных строительных блоков, которые соединяются терефталатными дианионными мостиками, формируя трехмерный координационный полимер с открытой архитектурой. Размер пор примерно 5 Å во всех трех измерениях.

Обнаружено, что данный материал способен к размер- и энантиоселективной сорбции алкиларилсульфоксидов (таблица 1). При сорбции из рацемических смесей энантиоселективность достигала 60% (предпочтительнее сорбировались S-энантиомеры). При этом сульфоксиды с небольшими заместителями энантиоселективно сорбируются на полимерный материал, тогда как для крупных молекул сульфоксидов (бензилфенилсульфоксида) сорбция отсутствует. Наибольшая энантиоселективность наблюдается при сорбции PhSOMe в CH2Cl2. Были определены константы сорбции для ряда сульфоксидов (таблица 2).

Для практического разделения сульфоксидов была изготовлена колонка для жидкостной хроматографии с гомохиральным металлорганическим микропористым материалом, 1·(DMF), в качестве сорбента (длина 110 мм, диаметр 8 мм, общая масса сорбента примерно 5 г).

При разделении рацемического PhSOMe получали примерно 64% энантиомерно чистого R-изомера и примерно 32% энантиомерно чистого S-изомера по отношению к начальному количеству соответствующего энантиомера. После многократного использования не было обнаружено изменений в разделяющей способности колонки и уменьшения ее длины, что свидетельствует о стабильности сорбента в условиях разделения. В эксперименте по разделению энантиомерной смеси PhSOMe, обогащенной R-изомером (энантиомерный избыток 79%), был выделен оптически чистый R-энантиомер с выходом 80%. Эффективность разделения можно повысить увеличением длины колонки и использованием сорбента с однородным размером частиц. В случае метилфенилсульфоксида достигнуто лучшее разделение на колонке, что связано с более высокой стереоселективностью сорбции энантиомеров (выше отношение констант сорбции энантиомеров) данного сульфоксида на 1·(DMF) (таблица 2).

Диметилформамид, входящий в состав полимера 1·(DMF), может вымываться из структуры при пропускании через колонку больших количеств элюента, при этом возрастает величина сорбции сульфоксидов на полимер и меняется энантоиселективность разделения (в случае с PhSOMe значительно уменьшается, а с p-BrPhSOMe увеличивается) (таблица 1). Для сохранения сорбента в исходной форме, 1·(DMF)1, в элюент добавляли небольшое количество DMF (не более 2 об.%) с целью предотвращения вымывания последнего из структуры полимера.

Исследованный материал, [Zn2BDC·(L-Lac)·DMF]·(DMF), хорошо отвечает всем требованиям, предъявляемьм к сорбентам, использующимся для хроматографического разделения энантиомеров в промышленности /Алленмарк С. Хроматографическое разделение энантиомеров: пер. с англ. // М.: Мир, 1991/. Он не сжимается после пропускании через колонку большого количества элюента и химически инертен в применяемых условиях. Кроме того, представленный сорбент обладает высокой емкостью, характеризуется высокими факторами стереоселективности для выбранных субстратов и весьма низкой себестоимостью (поскольку в качестве носителя хиральности используется природная L-молочная кислота).

Таким образом, исследованный материал [Zn2BDC·(L-Lac)·DMF]·(DMF) является первым металлорганическим гомохиральным материалом, который обладает сорбционным свойствами, достаточными для его применения для жидкостной колоночной хроматографии. Впервые осуществлено хроматографического разделение энантиомеров с использованием гомохирального материала, 1·(DMF); впервые выполнено разделение сульфоксидов методом жидкостной колоночной хроматографии с хиральной неподвижной фазой. Данный материал по многим параметрам превосходит большинство хиральных неподвижных фаз, используемых для препаративного хроматографического разделения оптических изомеров. Он обладает высокой сорбционной емкостью, характеризуется высокими факторами стереоселективности, низкой себестоимостью, позволяет регулировать время удерживания путем варьирования содержания DMF в элюенте.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1.

Получение гомохирального металлорганического микропористого материала

В растворе DMF (10 мл) нагревают Zn(NO3)2·6Н2O (300 мг, 1 ммоль), L-молочную кислоту СН3СН(ОН)СООН (49 мг, 0.5 ммоль) и терефталевую кислоту С6Н4(СООН)2 (83 мг, 0.5 ммоль) при температуре 110°С двое суток. При этом получается соединение, [Zn2BDC·(L-Lac)·DMF]·(DMF), где BDC - дианион терефталевой кислоты, L-Lac-дианион молочной кислоты, представляющие собой большие бесцветные игольчатые кристаллы. Кристаллы отделяют фильтрованием, промывают DMF и Et2O и сушат в вакууме в течение 3 мин. Выход 86% (240 мг) /Dybtsev D.N., Nuzhdin A.L., Chun H., Bryliakov K.P., Taisi E.P., Fedin V.P., Kirn K. А Homochiral Metal-Organic Material with Permanent Porosity, Enantioselective Sorption Properties, and Catalytic Activity // Angew. Chem. Int. Ed., 2006, v.45, p.916-920/.

Рентгеноструктурный анализ монокристаллов показывает наличие трехмерной металл-органической решетчатой структуры. Состав продукта независимо подтвержден с помощью порошковой рентгеновской дифракции и элементного анализа. Вакуумирование полученного материала в течение 3 ч при 90°С приводит к 10%-й потере веса, что соответствует частичному удалению некоординированного DMF, присутствующего в порах полимера, и получается соединение состава [Zn2BDC·(L-Lac)·DMF]·(DMF)0.4. Вакуумирование при более высокой температуре (110-200°С) приводит к полному удалению координированного и некоординированного DMF.

Проведение сорбции сульфоксидов на гомохиральном материале

Рацемический сульфоксид (0.05-0.15 ммоль) растворяют в СН2Cl2 и добавляют 1·(DMF)m (m=0÷1). После перемешивания в течение 2.5 ч при комнатной температуре собирают на фильтре полимер, промывают гексаном (1 мл) для удаления следов фильтрата. Экстрагируют сорбированный сульфоксид метанолом (3×3 мл), удаляют растворитель и вымытый из полимера DMF в вакууме. Энантиомерный избыток (ее) определяют с помощью 1Н ЯМР с Eu(hfc)3 в CCl4. Определение величины сорбции проводят по спектрам 1Н ЯМР с добавлением известного количества эталона (3,5-дитретбутилсалицилового альдегида) //Dybtsev D.N., Nuzhdin A.L., Chun H., Bryliakov K.P., Taisi E.P., Fedin V.P., Kirn K. А Homochiral Metal-Organic Material with Permanent Porosity, Enantioselective Sorption Properties, and Catalytic Activity // Angew. Chem. Int. Ed., 2006, v.45, p.916-920//.

Изготовление хиральной колонки для жидкостной хроматографии

Измельчают твердый гомохиральный материал (растиранием в ступке и на ультразвуковой бане), выдерживают полимер в 0.01 М растворе DMF в CH2Cl2. Подготовленный таким образом сорбент (примерно 5 г) переносят в стеклянную колонку диаметром 8 мм, в результате получают колонку для хроматографии длиной 110 мм.

Хроматографическое разделение

На хроматографическую колонку наносят пробу сульфоксида (0.1-0.2 ммоль), растворенную в 0.2 мл элюента (0.01 М раствор DMF в СН2Cl2). Отбирают фракции по 0.5 мл, объемная скорость прохождения элюента примерно 2 мл/час. В некоторых экспериментах после отбора примерно 5 мл элюата увеличивают полярность (используют 1 об.% раствор DMF в СН2Cl2). В каждой из отобранных фракций с помощью 1Н ЯМР по внутреннему стандарту (трихлорэтилен) определяют содержание сульфоксида. Энантиомерные избытки во фракциях определяют по 1Н ЯМР с добавлением Eu(hfc)3 в CCl4. Используя экспериментальные данные о содержании сульфоксидов и энантиомерных избытках во фракциях, строят зависимость концентрации сульфоксидов в пробах от объема элюата.

После завершения эксперимента проводят процедуру регенерации колонки. Для этого пропускают через колонку 7 мл 10% раствора DMF в CH2Cl2 и оставляют колонку в таком состоянии. Непосредственно перед началом следующего эксперимента для удаления избыточного DMF через колонку пропускают 7 мл элюента.

Характерные сдвиги 1H использованных в работе соединений.

1Н ЯМР (250 МГц, CCl4, 20°С), δ: метилфенилсульфоксид 2.61 (s, 3Н); метил-p-толилсульфоксид 2.58 (s, 3Н), 2.42 (s, 3Н); трихлорэтилен 6.46 (s, 1H); метил-p-бромфенилсульфоксид 2.69 (s, 3Н); метил-p-нитрофенилсульфоксид 2.78 (s, 3Н), CCl4:CDCl3=1:1; 3,5-дитретбутилсалицилового альдегида δ 9.86 (s, 1H).

Результаты экспериментов по разделению метилфенил сульфоксида и метил-p-толилсульфоксида (Фиг.1, 2, 3, 4).

Хроматограммы, полученные в экспериментах по разделению метилфенилсульфоксида и метил-p-толилсульфоксида на колонке из [Zn2BDC·(L-Lac)·DMF]·(DMF): (а) рацемическая смесь PhSOMe, 0.13 ммоль (18 мг), элюент 0.01 М раствор DMF в CH2Cl2; (б) рацемическая смесь p-MePhSOMe, 0.2 ммоль (31 мг), элюент 0.01 М раствор DMF в СН2Cl2; (в) рацемическая смесь PhSOMe, 0.12 ммоль (17 мг), элюент: первые 5 мл 0.01 М раствор DMF в CH2Cl2 (0.1 об.%) далее 1% раствор DMF в CH2Cl2. Хроматографирование проводили после пятикратного использования колонки; (г) PhSOMe с 79% энантиомерным избытком R-изомера, 0.07 ммоль(10 мг), элюент: первые 3.5 мл 0.01 М раствор DMF в CH2Cl2, далее 1% раствор DMF в СН2Cl2.

Исследованы сорбционные свойства нового гомохирального металл-органического микропористого материала, [Zn2BDC·(L-Lac)·DMF]·(DMF). Обнаружено, что данный гомохиральный полимер способен к размер - и энантиоселекселективной сорбции сульфоксидов с энантиомерным избытком до 60%. С использованием этого материала как носителя изготовлена колонка для жидкостной хроматографии, которая позволяет разделять рацемические смеси сульфоксидов. После многократного использования не было обнаружено изменения разделяющей способности колонки. Впервые выполнено полупрепаративное разделение энантиомерной смеси сульфоксидов методом жидкостной колоночной хроматографии с использованием гомохирального металлорганического материала в качестве хиральной неподвижной фазы.

Таблица 1
Энантиоселективная сорбция сульфоксидов на гомохиральный материал, 1·(DMF)m
mСульфоксидРастворитель[SO]:ZnС(сульфоксида), МСорбция, молек./ст p.ед.ee(5) (сорб), %10.4PhSOMeCH2Cl21:1.300.050.682020.4p-BrPhSOMeCH2Cl21:2.870.0460.182730.4p-BrPhSOMeCH2Cl21:1.300.0920.273040p-BrPhSOMeCH2Cl21:2.410.040.021251PhSOMeCH2Cl21:1.920.0350.215361PhSOMeCH2Cl21:1.030.1140.365471PhSOMeCH2Cl21:0.790.0200.405681PhSOMeCH2Cl2(1)1:0.680.0340.306091PhSOMeCH2Cl2(2)1:0.790.0200.3249101PhSOMeCH2Cl2(1), (3)1:0.680.0340.3060111p-MePhSOMeCH2Cl2(1)1:0.790.1420.5935121p-MePhSOMeCH2Cl2(1)1:0.590.0340.5338131p-BrPhSOMeCH2Cl2(1)1:2.110.1080.06≈7141p-NO2PhSOMeCH2Cl21:1.300.0510.13≈0151PhSOMeСН3CN1:1.280.0490.2141161PhSOMeCCl4(1)1:0.680.0340.1034171PhSOMeC5H12:1:0.720.030≈0.0323CH2Cl2=3:1(4)Перемешивание проводят в течение 2.5 ч при комнатной температуре, если указано иное.(1) Добавляют DMF, [DMF]=0.01 моль/л.(2) Проводят перемешивание в течение 30 мин.(3) При 0°С.(4) Добавляют DMF, [DMF]=0.005 моль/л.(5) Энантиомерный избыток, ее=([R]-[S])/([R]+[S]).Таблица 2.
Константы сорбции энантиомеров некоторых сульфоксидов на гомохиральный полимер 1 (DMF)m.
mСульфоксидK1, М-1К2, М-1α(1)0.4p-BrPhSOMe38182.11PhSOMe68154.51p-MePhSOMe3261292.5(1) Параметр стереоселективности сорбции α=K1/K2

Похожие патенты RU2310505C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ОПТИЧЕСКИ ЧИСТЫХ СУЛЬФОКСИДОВ 2007
  • Нуждин Алексей Леонидович
  • Дыбцев Данил Николаевич
  • Брыляков Константин Петрович
  • Федин Владимир Петрович
  • Талзи Евгений Павлович
RU2336265C1
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФОКСИДОВ КАТАЛИТИЧЕСКИМ ОКИСЛЕНИЕМ ТИОЭФИРОВ 2007
  • Нуждин Алексей Леонидович
  • Дыбцев Данил Николаевич
  • Брыляков Константин Петрович
  • Федин Владимир Петрович
  • Талзи Евгений Павлович
RU2349583C1
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФОКСИДОВ КАТАЛИТИЧЕСКИМ ОКИСЛЕНИЕМ ТИОЭФИРОВ 2008
  • Нуждин Алексей Леонидович
  • Дыбцев Данил Николаевич
  • Брыляков Константин Петрович
  • Федин Владимир Петрович
  • Талзи Евгений Павлович
RU2374225C1
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФОКСИДОВ 2010
  • Брыляков Константин Петрович
  • Талзи Евгений Павлович
RU2448954C1
СПОСОБ ПОЛУЧЕНИЯ ОПТИЧЕСКИ ЧИСТЫХ ХИРАЛЬНЫХ ПИРИДИЛСУЛЬФИНИЛЬНЫХ ПРОИЗВОДНЫХ БЕНЗИМИДАЗОЛОВ 2015
  • Брыляков Константин Петрович
  • Талзи Евгений Павлович
RU2574734C1
СОРБЕНТ ДЛЯ ХРОМАТОГРАФИИ ОПТИЧЕСКИХ ИЗОМЕРОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2006
  • Староверов Сергей Михайлович
  • Кузнецов Михаил Александрович
  • Сахаров Иван Юрьевич
  • Ярополов Александр Иванович
  • Морозова Ольга Владимировна
  • Шумакович Галина Петровна
RU2348455C2
СПОСОБЫ СИНТЕЗА ЗАМЕЩЕННЫХ СУЛЬФОКСИДОВ 1995
  • Эрик Магнус Ларссон
  • Урбан Ян Стенхеде
  • Хенрик Серенсен
  • Пер Оскар Сверкер Вон Унге
  • Ханна Кристина Коттон
RU2157806C2
БИОКАТАЛИТИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ (R)-ФЕНИЛМЕТИЛОВОГО СУЛЬФОКСИДА 2011
  • Ившина Ирина Борисовна
  • Гришко Виктория Викторовна
  • Елькин Андрей Анатольевич
RU2477316C1
Способ определения энантиомерного избытка хиральных соединений (варианты) 2015
  • Расторгуев Александр Александрович
  • Тарасевич Аркадий Викторович
  • Снытников Валерий Николаевич
RU2610352C1
СПОСОБ ПОЛУЧЕНИЯ (S)-(-)-6-БЕНЗИЛОКСИ-3,4-ДИГИДРО-2,5,7,8-ТЕТРАМЕТИЛ-2Н-1-БЕНЗОПИРАН-2-ИЛМЕТАНОЛА 2010
  • Шафиков Руслан Вависович
  • Спивак Анна Юльевна
  • Одиноков Виктор Николаевич
RU2443695C1

Иллюстрации к изобретению RU 2 310 505 C1

Реферат патента 2007 года СПОСОБ РАЗДЕЛЕНИЯ ХИРАЛЬНЫХ СУЛЬФОКСИДОВ С ПОМОЩЬЮ ЭНАНТИОСЕЛЕКТИВНОЙ ХРОМАТОГРАФИИ

Изобретение относится к области химии, а именно к разделению хиральных сульфоксидов, которые широко применяются в синтезе хиральных органических соединений. Описан гомохиральный металлорганический микропористый полимерный материал, способный к энантиоселективной сорбции сульфоксидов, и разработана методика хроматографического разделения хиральных сульфоксидов на колонке, наполненной этим материалом в качестве хиральной неподвижной фазы. Технический результат - возможность препаративного хроматографического разделения хиральных сульфоксидов. 2 табл., 4 ил.

Формула изобретения RU 2 310 505 C1

Способ разделения хиральных сульфоксидов с помощью энантиоселективной жидкостной колоночной хроматографии, отличающийся тем, что в качестве неподвижной фазы используют гомохиральный металлоорганический микропористый координационный полимерный сорбент состава [Zn2BDC(L-Lac)·DMF]·(DMF), где BDC - дианион терефталевой кислоты, L-Lac - дианион молочной кислоты, DMF - диметилформамид.

Документы, цитированные в отчете о поиске Патент 2007 года RU2310505C1

US 5641404 А, 24.06.1997
US 5868938 А, 09.02.1999
US 6646131 А, 11.11.2003
DE 4115291 А, 11.12.1992
WO 2005066074 A1, 21.07.2005.

RU 2 310 505 C1

Авторы

Нуждин Алексей Леонидович

Дыбцев Данил Николаевич

Брыляков Константин Петрович

Федин Владимир Петрович

Талзи Евгений Павлович

Даты

2007-11-20Публикация

2006-06-13Подача