СПОСОБ ПОЛУЧЕНИЯ СУЛЬФОКСИДОВ Российский патент 2012 года по МПК C07C315/02 

Описание патента на изобретение RU2448954C1

Изобретение относится к области органической химии и гомогенного катализа, а именно к разработке нового каталитического процесса стереоселективного каталитического окисления тиоэфиров для синтеза оптически чистых хиральных сульфоксидов.

Хиральные сульфоксиды находят все более широкое применение в процессах асимметрического синтеза благодаря способности сульфинильной группы служить эффективным хиральным контроллером в образовании С-С и С-Х связей (Прилежаева Е.Н. Химия сульфоксидов и сульфонов // Получение и свойства органических соединений серы, Л.И.Беленький, ред., Москва: Химия, 1998). Кроме того, многие сульфоксиды проявляют биологическую активность, что позволяет использовать их в качестве фармпрепаратов / Kalir A., Kalir H.H. Biological activity of sulfoxides and sulfones // In The Chemistry of Sulfur-Containing Functional Groups, S.Patai, Z.Rappoport, Eds., Wiley: New York, 1993, p.957-975).

Выделяют три общих подхода к синтезу энантиомерно чистых органических соединений: (1) разделение рацемических смесей, например классическое расщепление через диастереомеры, хроматографическре разделение, энзиматическое разделение, кинетическое разделение, (2) химическую модификацию природных хиральных соединений и (3) асимметрический синтез (Julien Legros, Juan R. Dehli, Carsten Bolm. Applications of Catalytic Asymmetric Sulfide Oxidations to the Syntheses of Biologically Active Sulfoxides // Adv. Synth. Catal. 2005, v.347, p.19-31).

Основным подходом к синтезу оптически чистых сульфоксидов в настоящее время является асимметрический синтез, причем наиболее перспективным представляется каталитический асимметрический синтез, поскольку в последнем случае открывается возможность получать много хиральных молекул продукта с использованием всего одной хиральной молекулы катализатора.

На сегодняшний день единственным применяемым в промышленности способом асимметрического каталитического окисления тиоэфиров в сульфоксиды является модифицированный способ Кагана-Модены, в котором катализатором выступает получаемый in situ комплекс титана(IV) с (S,S)-диэтилтартратом. Однако существующие методики требуют присутствия до 30 мол.% титана и 60 мол.% диэтилтартрата, а в качестве окислителя используется токсичный кумилгидропероксид или трет-бутилгидропероксид, обладающий резким запахом (Cotton H., Elebring Т., Larsson M., Li L., Sörensen H., von Unge S. Asymmetric synthesis of esomeprazole // Tetrahedron: Asymmetry, 2000, v.11, p.3819-3825).

Другие известные способы, основанные на применении вместо (S,S)-диэтилтартрата других хиральных лигандов, например 1,2-дифенилэтан-1,2-диола, позволяют снизить соотношение титан:пирметазол до 5 мол.% (Jiang В., Zhao X.-L., Dong J.-J., Wang W.-J., Eur. J. Org. Chem. 2009, p.987-991), при этом в качестве окислителя также используются органические гидропероксиды.

Отметим, что в заявке на изобретение WO 03089408 описан способ получения хиральных замещенных пиридинилметилсульфинильных бензимидазолов и их солей с помощью окисляющего агента в органическом растворителе в присутствии основания и катализатора, состоящего из комплекса титана или ванадия с хиральным монодентатным лигандом. Окислитель при этом выбирается из пероксида водорода, алкилгидропероксидов и алкиларилгидропероксида. Однако использование пероксида водорода и алкиларилгидропероксида не подтверждено примерами, содержащимися в WO 03089408.

В патенте ЕА 009385 описан способ энантиоселективного синтеза отдельных энантиомеров модафинила путем взаимодействия прохирального сульфида с комплексом металла с хиральным лигандом, основанием и окисляющим агентом в среде органического растворителя. При этом в качестве комплекса металла с хиральным лигандом используется хиральный комплекс титана, циркония, марганца или ванадия, который получают из соединения металла, хирального лиганда и воды. При этом окислитель представляет собой пероксид водорода, трет-бутилгидропероксид и гидропероксид кумола. Однако использование пероксида водорода не подтверждено примерами, содержащимися в ЕА 009385. Кроме того, в качестве хиральных лигандов авторы подтвердили примерами только (S,S)-диэтилтартрат и (R,R)-диэтилтартрат.

В патенте WO 2010029950 описаны способы приготовления комплексов титана с саленовыми, салаленовыми и салановыми лигандами, предназначенных для применения в процессах получения оптически активных эпоксисоединений и сульфоксидов. В частности, авторами описан синтез ряда комплексов титана с лигандами, содержащими O-алкильные, О-арильные либо О-алкиларильные заместители в орто-положениях фенильных заместителей арильных колец, в связи с чем эти лиганды следует отнести к достаточно узкому и специфическому классу гексадентатных (O,O,N,N,O,O-донорных). В то же время WO 2010029950 не сообщает о возможности проведения процессов получения оптически чистых сульфоксидов в присутствии комплексов титана, молибдена, ванадия с тетрадентатными O,N,N,O-донорными салановыми лигандами в различных органических растворителях.

Очевидно, для целей получения фармацевтических препаратов, к чистоте и безопасности для человека которых предъявляются повышенные требования, целесообразно максимально снизить количество катализатора - комплекса металла - и воспользоваться наиболее безопасным для человека и окружающей среды (и при этом доступным) окислителем, таким как Н2О2. Кроме того, для достижения наибольшей эффективности желательно (1) максимально упростить технический процесс, например загружать готовый к употреблению катализатор, а не готовить его in situ, (2) повысить количество совершаемых катализатором циклов и соответственно снизить соотношение катализатор/субстрат.

Таким образом, изобретение решает задачу упрощения процесса получения оптически чистых органических сульфоксидов и повышение экологической безопасности этого процесса.

Технический результат - снижение соотношения катализатор/субстрат, использование доступного и экологически безопасного окислителя, например Н2О2.

Задача решается способом получения оптически чистых сульфоксидов, который осуществляют при взаимодействии несимметричных тиоэфиров, имеющих в своем составе алкильные и/или ароматические заместители, с хиральными комплексами титана, либо молибдена, либо ванадия с тетрадентатными О,N,N,О-донорными лигандами саланового типа, представляющими собой производные бис(салицил)этилендиамина, и окислителем в среде любого из перечисленных растворителей: метиленхлорида, хлороформа, тетрахлорметана, толуола, метанола либо их смеси. В качестве хиральных комплексов металлов с тетрадентатными О,N,N,О-донорными лигандами используют предпочтительно хиральные комплексы титана с О,N,N,О-донорными лигандами саланового типа, представляющими собой производные бис(салицил)этилендиамина. Окислителем может быть пероксид водорода либо аддукт пероксида водорода с мочевиной Н2О2·(NH2)2СО. Хиральные комплексы металлов используют заранее приготовленные либо получаемые in situ.

В частности, настоящим изобретением предлагается новый способ получения оптически чистых сульфоксидов, основанный на процессе селективного окисления прохиральных тиоэфиров 30% пероксидом водорода, в присутствии каталитических количеств (≤1 мол.%) хиральных комплексов титана, молибдена или ванадия типа 1 с тетрадентатными О,N,N,О-донорными лигандами саланового типа - производных бис(салицил)этилендиамина (см. Фиг.1, примеры строения салановых лигандов и салановых комплексов титана, где X,Y,Z = алкил, арил, галоген, NO2). В качестве предпочтительных катализаторов используют хиральные комплексы титана.

При этом не требуется использовать никакие дополнительные каталитические добавки, как-то: вода, кислоты, щелочи, соли, комплексы, донорные лиганды и т.д., либо буферные соединения.

Готовить катализаторы можно так, как описано в статье (Bryliakov K.P., Talsi E.P. Titanium-salan-catalyzed asymmetric oxidation of sulfides and kinetic resolution of sulfoxides with H2O2 as the oxidant // Eur. J. Org. Chem., 2008, p.3369-3376) или в Примере 2. В качестве катализаторов можно использовать как заранее приготовленные комплексы титана, так и получаемые in situ.

Было установлено, что комплексы титана, обладающие данным строением, способны катализировать стереоселективное окисление тиоэфиров до сульфоксидов пероксидом водорода, причем лучшим для данной реакции растворителем является метиленхлорид CH2Cl2, т.к. в нем образуются сульфоксиды с наибольшим выходом и энантиомерным избытком.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1.

Получение хиральных алкиларилсульфоксидов окислением соответствующих тиоэфиров пероксидом водорода в присутствии каталитических количеств салановых комплексов титана.

К раствору саланового комплекса титана 1a-i (1 мкмоль или 0.2 мкмоль) в 2 мл CH2Cl2, термостатированному при заданной температуре, добавляют 0.1 ммоль сульфида и необходимое количество 30% водного пероксида водорода одной порцией. Перемешивают полученный раствор на магнитной мешалке до достижения нужной глубины протекания реакции (1-48 ч), контролируя протекание реакции с помощью ТСХ (элюент: EtOAc/гексан).

В реакционную смесь добавляют 1 мл воды. Органическую фазу отделяют и отгоняют растворитель в токе сжатого воздуха. Остаток экстрагируют 8 мл ССl4, экстракт осушают CaSO4 и анализируют с помощью 1Н ЯМР. Энантиомерный избыток (ЭИ) определяют с помощью 1Н ЯМР с хиральным реагентом сдвига Eu(hfc)3.

Пример 2.

Получение хиральных алкиларилсульфоксидов окислением соответствующих тиоэфиров пероксидом водорода в присутствии каталитических количеств салановых комплексов титана, получаемых in situ.

К раствору саланового лиганда a-i (1.68-3.0 мкмоль) в CH2Cl2 добавляют Ti(O-i-Pr)4 (2.0 мкмоль) и перемешивают в течение 30 мин при комнатной температуре. Образец термостатируют при нужной температуре и добавляют 0.1 ммоль сульфида и необходимое количество 30% водного пероксида водорода одной порцией. Перемешивают полученный раствор на магнитной мешалке до достижения нужной глубины протекания реакции (1-48 ч), контролируя протекание реакции с помощью ТСХ (элюент: EtOAc/гексан).

В реакционную смесь добавляют 1 мл воды. Органическую фазу отделяют и отгоняют растворитель в токе сжатого воздуха. Остаток экстрагируют 8 мл CCl4, экстракт осушают CaSO4 и анализируют с помощью 1Н ЯМР. Энантиомерный избыток (ЭИ) определяют с помощью 1Н ЯМР с хиральным реагентом сдвига Eu(hfc)3. Окисление по данному способу показывает более низкую хемо- и энантиоселективность, чем по способу, описанному в примере 1.

Результаты окисления различных сульфидов в присутствии каталитических количеств комплексов 1 приведены в таблице 1.

Выяснилось, что комплексы данного типа являются наиболее подходящими для окисления тиоэфиров с двумя объемными заместителями, такими как PhSCH2Ph. Именно для этого субстрата наблюдался наибольший выход и энантиоселективность реакции, причем наилучшие каталитические свойства показал комплекс 1g (X=Ph, Y=Н) (таблица 1). Энантиомерный избыток образующегося бензилфенилсульфоксида возрастал при увеличении соотношения окислитель/субстрат одновременно с повышением доли сульфона в продуктах реакции (таблица 1, опыты 14-17), что свидетельствовало о существовании кинетического разделения образующихся сульфоксидов в процессе дальнейшего их окисления до сульфона (Bryliakov K.P., Talsi Е.Р. Titanium-salan-catalyzed asymmetric oxidation of sulfides and kinetic resolution of sulfoxides with H2O2 as the oxidant // Eur. J. Org. Chem., 2008, p.3369-3376). Катализатор оказался способен осуществлять не менее 500 каталитических циклов без снижения энантиоселективности (ср. таблица 1, опыты 17-20). Было также показано, что понижение температуры способствует росту селективности по сульфоксиду и энантиомерного избытка (таблица 1, ср. опыты 15 и 21).

Данные о влиянии растворителя и температуры на асимметрическое окисление ряда тиоэфиров приведены в таблице 2. Наилучшим растворителем для данной реакции является CH2Cl2, в то время как использование CHCl3, CCl4, толуола и метанола приводит к более низким значениям энантиомерного избытка получаемых сульфоксидов (примеры 1-5). Показано также, что наилучшим окислителем является пероксид водорода, а применение аддукта пероксида водорода с мочевиной Н2О2·(NH2)2СО (пример 4) приводит к более низким значениям энантиомерного избытка.

В таблице 3 приведены результаты энантиоселективного окисления тиоэфиров пероксидом водорода в присутствии каталитических количеств комплексов ряда переходных металлов с тетрадентатными О,N,N,О-донорными лигандами, получаемых in situ. Показано, что наивысшие величины энантиомерных избытков достигаются в присутствии комплексов титана, в то время как использование комплексов ванадия и молибдена дает более низкие значения энантиомерных избытков.

Явление кинетического разделения сульфоксидов было более подробно изучено на примере двух сульфоксидов: PhS-i-Pr и PhSCH2Ph (Фиг.2). На Фиг.2 показан выход сульфоксида и сульфона и энантиомерный избыток (ЭИ) сульфоксида в зависимости от соотношения окислитель/субстрат при окислении PhS-i-Pr (а) и PhSCH2Ph (b). Катализатор 1g, CH2Cl2, 25°С, сульфид/[1]=100:1.

Было показано, что с ростом соотношения окислитель/субстрат энантиомерный избыток для данных сульфоксидов монотонно возрастает (приближаясь в случае PhSOCH2Ph к 99%), при этом, однако, снижается доля целевого продукта - сульфоксида - в реакционной смеси и возрастает доля продукта дальнейшего окисления сульфоксида - сульфона.

На Фиг.3 представлен выход сульфоксида и сульфона и энантиомерный избыток (ЭИ) сульфоксида в зависимости от соотношения окислитель/субстрат при окислении PhSCH2Ph (а). Содержание сульфида, сульфоксида и сульфона в реакционной смеси по окончании реакции при окислении PhSCH2Ph (b). Катализатор 1g, 5°С, сульфид/[1]=100:1.

Таблица 1 Энантиоселективное окисление сульфидов системой комплекс титана 1/H2O2. Комплекс [O]/[S] [моль/моль] Сульфид Время реакции [ч] Выход сульфоксид/сульфон [%][а] Селективность [%][b] ЭИ [%][c] (конфигурация) 1 1d 1.12 PhSCH3 2 77.5/12.0 87.0 45.0 (R) 2 1d 1.12 p-BrPhSCH3 2 70.5/10.5 87.0 42.0 (R) 3 1d 1.28 PhS-i-Pr 3 52.2/40.0 56.6 69.5 (R) 4 1d 1.6 PhSCH2Ph 3 51.0/47.6 51.7 86.0 (R) 5 1e 1.12 PhSCH3 2 76.0/16.5 82.0 46.7 (R) 6 1e 1.12 p-BrPhSCH3 2 68.3/10.7 86.5 39.0 (R) 7 1e 1.28 PhS-i-Pr 3 60.5/21.0 73.5 64.0 (R) 8 1e 1.6 PhSCH2Ph 3 62.0/34.0 64.5 74.5 (R) 9 1h 1.28 PhS-i-Pr 2.5 23.0/3.5 85.0 4.5 (R) 10 1h 1.12 PhSCH2Ph 2.5 26.5/3.0 90.0 4.0 (R) 11 1g 1.12 p-BrPhSCH3 16 72.5/13.5 84.0 16.0 (S) 12 1g 1.12 PhSiPr 16 47.5/27.0 63.5 69.0 (S) 13 1i 1.12 PhSCH2Ph 2 75.0/17.0 81.5 60.0 (S) 14 1g 0.64 PhSCH2Ph 16 48.0/4.0 92.5 82.0 (S) 15 1g 1.12 PhSCH2Ph 2 75.0/19.0 80.0 88.0 (S) 16 1g 1.36 PhSCH2Ph 4 73.5/22.0 77.0 90.5 (S) 17 1g 1.6 PhSCH2Ph 4 65.0/34.5 65.5 97.0 (S) 18 1g 1.6 PhSCH2Ph 4 63.5/35.5 64.0 97.0 (S) 19 1g 1.6 PhSCH2Ph 24 49.5/14.5 77.5 77.0 (S) 20 1g 1.6 PhSCH2Ph[d] 48 34.0/3.0 91.5 60.0 (S) 21 1g[e] 1.12 PhSCH2Ph 8 76.5/17.5 81.0 93.5 (S) [Субстрат]:[комплекс титана]=100:1 моль/моль (опыты 1-17 и 19), 500:1 моль/моль (опыт 18), 1000:1 моль/моль (опыт 19), 2000:1 моль/моль (опыт 20). Представлены результаты реакций согласно Примеру 1 при 25°С (опыты 1-18) и +5°С (опыт 19) в CH2Cl2. Начальная концентрация сульфида 0.05 М. [a] Определены из соотношения сульфида, сульфоксида и сульфона в реакционной смеси по данным 1Н ЯМР. [b] Селективность по сульфоксиду. [с] Энантиомерный избыток полученного сульфоксида. [d] Начальная концентрация сульфида 0.1 М. [е] При +5°С.

Таблица 2 Влияние растворителя, температуры на энантиоселективное окисление PhSCH2Ph, PhSiPr и 2-NaphSMe в присутствии катализаторов типа 1 Комплекс Темп. [°C] Растворитель [O]/[S] [моль/моль] [S]/[Cat] [моль/моль] Время реакции [ч] Выход сульфоксид/сульфон [%][а] Селективность [а] ЭИ (конфигурация) [%][b] 1 1g 25 CHCl3 1.6 100 4 58.0/27.5 68.0 88.0 (S) 2 1g 25 CCl4 1.6 100 4 8.0/7.0 53.0 57.5 (S) 3 1g 25 толуол 1.6 100 4 23.0/26.0 47.0 66.5 (5) 4 1g[c] 25 метанол 1.12 50 15 60.0/3.0 95.0 14.0 (S) 5 1g 25 CH2Cl2 1.6 100 4 65.0/34.5 65.5 97.0 (S) 6 1d 0 CH2Cl2 1.12 100 5 71.0/15.5 82.0 81.0 (R) 7 1e 0 CH2Cl2 1.12 100 5 67.5/10.0 87.0 75.5 (R) 8 1g 0 CH2Cl2 1.12 100 5 77.5/13.0 85.5 92.5 (S) 9 1d 0[d] CH2Cl2 1.28 100 6 60.5/31.0 66.0 72.5 (R) 10 1d 0[e] CH2Cl2 1.28 100 6 85.5/14.0 85.5 59.0 (R) Начальная концентрация сульфида 0.05 М, если не указано иное. В качестве субстрата использовали PhSCH2Ph, если не указано иное. [a] Определены из соотношения сульфида, сульфоксида и сульфона в реакционной смеси по данным 1Н ЯМР. Селективность определена по сульфоксиду. [b] Значения энантиомерных избытков (ЭИ) измерены с помощью метода 1Н NMR с хиральным реагентом сдвига Eu(hfc)3 в CCl4. [c] В качестве окислителя использовали аддукт пероксида водорода с мочевиной H2O2·(NH2)2CO. [d] В качестве субстрата использовали PhSiPr. [e] В качестве субстрата использовали 2-NaphSMe.

Таблица 3 Энантиоселективное окисление сульфидов системой лиганд/источник металла/Н2О2 Лиганд/металл Источник металла Тиоэфир Время реакции [ч] Выход сульфоксид/сульфон [%][а] Селективность [а] [%] ЭИ (конфигу-
рация) [%] [b]
1 g/Mo=1.0 МоО2(асас)2 PhSCH2Ph 24 79.5/12.0 87.0 8.5 (R) 2 g/Mo=1.0 МоО2(асас)2 PhSCH3 24 82.0/10.5 88.5 0 3 a/Mo=1.5 МоО2(асас)2 p-CH3PhSCH3 24 57.0/3.0 95.0 2.5 (5) 4 g/V=1.5 VO(acac)2 PhSCH2Ph 15 86.0/10.5 89.0 8.5 (R) 5 a/V=1.5 VO(асас)2 p-CH3PhSCH3 4 85.8/5.5 94.0 10.0 (R) 6 g/V=1.5 VO(O-n-Bu)3 p-BrPhSCH3 14 89.5/6.0 93.7 2.0 (R) 7 2/V=1.5 VO(O-n-Bu)3 p-CH3PhSCH3 14 51.5/6.5 89.0 6.0 (S) 8 d/V=1.5[c] VO(O-n-Bu)3 p-BrPhSCH3 20 32.0/4.5 87.5 37.5 (R) 9 d/V=1.5 VO(O-n-Bu)3 p-CH3PhSCH3 14 82.0/12.5 86.5 19.5 (R) 10 e/V=1.0 VO(O-n-Bu)3 p-CH3PhSCH3 15 85.5/14.0 85.9 17.0 (R) 11 e/V=1.0 VO(O-n-Bu)3 p-BrPhSCH3 15 78.0/13.5 85.2 13.5 (R) 12 d/Ti=1.0 Ti(O-i-Pr)4 PhSCH2Ph 5 62.5/29.5 68.0 62.5 (R) 13 e/Ti=1.0 Ti(O-i-Pr)4 PhSCH2Ph 5 64.5/26.5 70.5 62.0 (R) 14 g/Ti=1.0 Ti(O-i-Pr)4 PhSCH2Ph 2.5 62.5/14.5 81.0 64.0 (S) 15 g/Ti=1.0 Ti(O-i-Pr)4 PhSCH2Ph 15 68.8/17.0 80.0 60.0 (S) Соотношение [окислитель]:[субстрат]:[металл]=56:50:1. Реакцию вели при 25°С в CH2Cl2. Начальная концентрация сульфида 0.05 М. [a] Определены из соотношения сульфида, сульфоксида и сульфона в реакционной смеси по данным 1H ЯМР. Селективность определена по сульфоксиду. [b] Значения энантиомерных избытков (ЭИ) измерены с помощью метода 1Н NMR с хиральным реагентом сдвига Eu(hfc)3 в CCl4. [c] Реакцию вели в CHCl3 при -12°С без перемешивания.

Было показано, что понижение температуры позволяет повысить хемо- и стереоселективность окисления PhSCH2Ph (Фиг.3). Так, при проведении каталитической реакции при +5°С был достигнут энантиомерный избыток 98.5% при соотношении окислитель/субстрат 1.34 (при этом выход сульфоксида составил 65.8%). Максимальный выход сульфоксида (72-77%) достигается при соотношении окислитель/субстрат 1.05-1.15, что позволяет рекомендовать использование таких соотношений для проведения препаративных каталитических синтезов.

Таким образом, впервые показано, что салановые комплексы титана способны катализировать окисление тиоэфиров пероксидом водорода с высокой селективностью до 72-77% и энантиоселективностью до 98.5%. Наилучшие результаты были показаны при окислении тиоэфиров с двумя объемными заместителями (такими как PhS-i-Pr и PhSCH2Ph), которые могут рассматриваться в качестве реалистичных моделей биологически активных соединений. Высокий уровень асимметрической индукции достигается в результате одновременного стереоселективного окисления сульфидов/кинетического разделения сульфоксидов. Катализаторы способны выполнять до 500 каталитических циклов без снижения энантиоселективности. Катализаторы данного типа используют хиральные лиганды, приготавливаемые из доступных предшественников, нетоксичный металл, экологически безопасный окислитель. Окисление проводится в предпочтительном растворителе дихлорометане, который благодаря низкой температуре кипения (+39.8°С при 760 торр) легко отгоняется от реакционной смеси. Хемо- и энантиоселективность окисления можно повысить понижением температуры проведения реакции.

Похожие патенты RU2448954C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ОПТИЧЕСКИ ЧИСТЫХ ХИРАЛЬНЫХ ПИРИДИЛСУЛЬФИНИЛЬНЫХ ПРОИЗВОДНЫХ БЕНЗИМИДАЗОЛОВ 2015
  • Брыляков Константин Петрович
  • Талзи Евгений Павлович
RU2574734C1
СПОСОБ ПОЛУЧЕНИЯ ОПТИЧЕСКИ ЧИСТЫХ СУЛЬФОКСИДОВ 2007
  • Нуждин Алексей Леонидович
  • Дыбцев Данил Николаевич
  • Брыляков Константин Петрович
  • Федин Владимир Петрович
  • Талзи Евгений Павлович
RU2336265C1
ЭНАНТИОСЕЛЕКТИВНЫЙ СПОСОБ ПОЛУЧЕНИЯ ПРОИЗВОДНЫХ СУЛЬФОКСИДОВ 2005
  • Коэн Авраам
  • Шютз Франсуа
  • Шарби Сюзи
  • Мартине Фредерик
  • Гизецки Патрисиа
RU2380357C2
СПОСОБ ПОЛУЧЕНИЯ ЭЗОМЕПРАЗОЛА 2007
  • Хоменко Татьяна Михайловна
  • Волчо Константин Петрович
  • Салахутдинов Нариман Фаридович
  • Толстиков Генрих Александрович
RU2339631C1
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФОКСИДОВ КАТАЛИТИЧЕСКИМ ОКИСЛЕНИЕМ ТИОЭФИРОВ 2008
  • Нуждин Алексей Леонидович
  • Дыбцев Данил Николаевич
  • Брыляков Константин Петрович
  • Федин Владимир Петрович
  • Талзи Евгений Павлович
RU2374225C1
СПОСОБЫ СИНТЕЗА ЗАМЕЩЕННЫХ СУЛЬФОКСИДОВ 1995
  • Эрик Магнус Ларссон
  • Урбан Ян Стенхеде
  • Хенрик Серенсен
  • Пер Оскар Сверкер Вон Унге
  • Ханна Кристина Коттон
RU2157806C2
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФОКСИДОВ КАТАЛИТИЧЕСКИМ ОКИСЛЕНИЕМ ТИОЭФИРОВ 2007
  • Нуждин Алексей Леонидович
  • Дыбцев Данил Николаевич
  • Брыляков Константин Петрович
  • Федин Владимир Петрович
  • Талзи Евгений Павлович
RU2349583C1
СПОСОБ ПОЛУЧЕНИЯ ОМЕПРАЗОЛА 1998
  • Коттон Ханна
  • Ларссон Магнус
  • Маттсон Андерс
RU2211218C2
ОКИСЛИТЕЛЬНАЯ ДЕСУЛЬФУРИЗАЦИЯ С ИСПОЛЬЗОВАНИЕМ КАТАЛИЗАТОРА НА ОСНОВЕ ТИТАНА (IV) И ОРГАНОГИДРОПЕРОКСИДОВ 2011
  • Литц Кайл Е.
  • Вриланд Дженнифер Л.
RU2581473C2
СПОСОБ РАЗДЕЛЕНИЯ ХИРАЛЬНЫХ СУЛЬФОКСИДОВ С ПОМОЩЬЮ ЭНАНТИОСЕЛЕКТИВНОЙ ХРОМАТОГРАФИИ 2006
  • Нуждин Алексей Леонидович
  • Дыбцев Данил Николаевич
  • Брыляков Константин Петрович
  • Федин Владимир Петрович
  • Талзи Евгений Павлович
RU2310505C1

Иллюстрации к изобретению RU 2 448 954 C1

Реферат патента 2012 года СПОСОБ ПОЛУЧЕНИЯ СУЛЬФОКСИДОВ

Изобретение относится к способу получения оптически чистых сульфоксидов. Способ включает взаимодействие несимметричных тиоэфиров, имеющих в своем составе алкильные и/или ароматические заместители, с хиральными комплексами титана, либо молибдена, либо ванадия с тетрадентатными О,N,N,О-донорными лигандами саланового типа, представляющими собой производные бис(салицил)этилендиамина, и окислителем в среде растворителя. Растворитель выбран из группы, включающей метиленхлорид, хлороформ, тетрахлорметан, толуол, метанол либо их смесь. Технический результат - снижение соотношения катализатор/субстрат. 3 з.п. ф-лы, 3 ил., 3 табл., 2 пр.

Формула изобретения RU 2 448 954 C1

1. Способ получения оптически чистых сульфоксидов при взаимодействии несимметричных тиоэфиров, имеющих в своем составе алкильные и/или ароматические заместители, с хиральными комплексами титана, либо молибдена, либо ванадия с тетрадентатными О,N,N,О-донорными лигандами саланового типа, представляющими собой производные бис(салицил)этилендиамина, и окислителем в среде любого из перечисленных растворителей: метиленхлорида, хлороформа, тетрахлорметана, толуола, метанола либо их смеси.

2. Способ по п.1, отличающийся тем, что в качестве хиральных комплексов металлов с тетрадентатными О,N,N,О-донорными лигандами используют предпочтительно хиральные комплексы титана с О,N,N,О-донорными лигандами саланового типа, представляющими собой производные бис(салицил)этилендиамина.

3. Способ по п.1, отличающийся тем, что окислителем может быть пероксид водорода либо аддукт пероксида водорода с мочевиной H2O2·(NH2)2CO.

4. Способ по п.1, отличающийся тем, что хиральные комплексы металлов используют заранее приготовленные либо получаемые in situ.

Документы, цитированные в отчете о поиске Патент 2012 года RU2448954C1

JP 2002308845 А, 23.10.2002
WO 2010029950 A1, 18.03.2010
WO 9303838 A1, 04.03.1993
Колпак из толя и т.п. материала для защиты хлебных скирд от дождя 1927
  • Ф. Вернер
  • Л. Рейсс
SU9385A1
JP 2004323445 A, 18.11.2004
JP 10072430 A, 17.03.1998
JP 2008222611 A, 25.09.2008
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФОКСИДОВ КАТАЛИТИЧЕСКИМ ОКИСЛЕНИЕМ ТИОЭФИРОВ 2008
  • Нуждин Алексей Леонидович
  • Дыбцев Данил Николаевич
  • Брыляков Константин Петрович
  • Федин Владимир Петрович
  • Талзи Евгений Павлович
RU2374225C1
ЭНАНТИОСЕЛЕКТИВНЫЙ СПОСОБ ПОЛУЧЕНИЯ ПРОИЗВОДНЫХ СУЛЬФОКСИДОВ 2005
  • Коэн Авраам
  • Шютз Франсуа
  • Шарби Сюзи
  • Мартине Фредерик
  • Гизецки Патрисиа
RU2380357C2
US 2010094037 A1, 15.04.2010.

RU 2 448 954 C1

Авторы

Брыляков Константин Петрович

Талзи Евгений Павлович

Даты

2012-04-27Публикация

2010-10-18Подача