Изобретение относится к способу получения сложного гранулированного удобрения, а именно к NP-удобрениям, типа суперфосфатов. Суперфосфаты широко используются в сельском хозяйстве для различных видов культур. Процесс предусматривает вовлечение в производство низкосортного фосфатного сырья.
Известны способы получения гранулированных суперфосфатов, в которых фосфатное сырье разделяют на две части, обрабатывают одну из них серной кислотой, а затем в пульпу вводят оставшееся фосфатное сырье (например, патент РФ №2177464, кл. С05В 1/02, 2001 г., патент РФ №2102361, кл. С05В, 1998 г.).
Однако оба способа используют моносырье (сырье одного месторождения, содержащее одинаковое количество P2O5).
Наиболее близким к описываемому по технической сущности и достигаемому результату является другой известный способ получения гранулированного суперфосфата, включающий разложение апатита серной кислотой с получением фосфатной пульпы, введение в нее низкосортного фосфатного сырья, грануляцию и сушку готового продукта.
По этому способу (по одному из примеров) апатит в реакторе разлагают серной кислотой при температуре 96-100°С. Полученную фосфатную пульпу направляют во второй реактор, куда подают Кингисеппский фосфорит, температура в реакторе 90-100°С. Затем полученную пульпу гранулируют и сушат (Патент РФ №1465436, С05В 1/02, 1987 г.).
Однако данный способ не позволяет получить удобрение, содержащее одновременно водорастворимую и цитратнорастворимую формы Р2О5, т.е. данное удобрение не обладает достаточным универсальным действием, что, безусловно, снижает эффективность его действия. Кроме того, готовый продукт содержит до 3% Р2О5 свободной, что приводит к ухудшению его физико-механических свойств - снижению прочности гранул и увеличению слеживаемости.
Задачей изобретения было создание способа получения гранулированного удобрения, не только лишенного вышеперечисленных недостатков, но и позволяющего вовлечь в производство значительное количество низкосортного фосфатного сырья, например, такого как фосфориты Вятско-Камского и Егорьевского месторождений (содержание Р2О5 в них 19-23%, в то время как содержание P2O5 в Кингисеппском фосфорите, используемом в прототипе, составляет 28-29%).
Задача решена в способе получения гранулированного удобрения, включающего разложение апатита серной кислотой с получением фосфатной пульпы, введение в нее низкосортного фосфатного сырья, грануляцию и сушку готового продукта. По предлагаемому способу фосфатную пульпу делят на две части, из одной части фильтрацией отделяют фосфорную кислоту, которую затем смешивают с оставшейся частью фосфатной пульпы, в смесь вводят низкосортное фосфатное сырье и серную кислоту, при этом соотношение Р2О5 смеси : P2O5 низкосортного фосфатного сырья берут равным (2-9):1, a затем полученную пульпу аммонизируют до рН 4,0-5,0. В смесь фосфатной пульпы и фосфорной кислоты вводят серную кислоту либо перед подачей низкосортного фосфатного сырья, либо одновременно.
Сущность способа заключается в следующем. Прежде всего способ разрабатывался с целью вовлечения в производство максимально возможного количества низкосортного фосфатного сырья при одновременном получении необходимого качества удобрения. Количество низкосортного сырья, вводимого в процесс, характеризуется соотношением Р2О5 смеси фосфатной пульпы и фосфорной кислоты : Р2О5 низкосортного фосфатного сырья. Оно определено исходя из следующих факторов. С одной стороны, соотношение Р2О5 смеси и Р2О5 низкосортного фосфатного сырья определяется необходимостью поддержания в результирующей пульпе определенной зависимости между Р2О5 и SO4 2- ионами, т.к. это соотношение напрямую влияет на прочность полученных гранул, в связи с тем что образующийся при конверсии сульфата кальция дикальцийфосфат не способствует упрочнению гранул.
С другой стороны, это соотношение обусловлено оптимальным содержанием Р2О5водн. и Р2О5усв. в готовом продукте. Исходя из вышесказанного соотношение Р2О5смеси : P5O5 низкосортного фосфатного сырья должно быть равно (2-9):1. Снижение его ниже 2 приведет к значительному снижению P2O5 водорастворимой в готовом продукте, а повышение выше 9 экономически нецелесообразно, т.к. мало вводится низкосортного фосфатного сырья. Кроме того, введение в процесс достаточного количества низкосортного фосфатного сырья позволяет значительно повысить физико-механические характеристики продукта за счет содержания в сырье полуторных оксидов (Fe2О3 и Al2O3), что приводит к повышению прочности гранул готового продукта до 9-12 МПа. В этом же направлении действует кремнекислота, частично переходящая в пульпу разложения низкосортного фосфата.
При аммонизации пульпы образующиеся комплексные цитратнорастворимые железо-алюмоаммонийные фосфаты являются центрами кристаллизации водорастворимых соединений фосфатов и сульфатов аммония. Аммонизация пульпы до рН 4,0-5,0 обеспечивает получение мольного отношения NH3:Н3PO4 в продукте, близкого к 1, резко снижает содержание свободной кислоты в продукте, что также влияет на его физико-механические свойства.
Использование предложенного способа позволяет вовлечь в производство 10-30% от общего количества фосфатного сырья бедных фосфоритов и при этом получить продукт пролонгированного действия, содержащий Р2О5водораств. и Р2О5усв. Прочность гранул увеличивается до 12 МПа, что позволяет снизить истираемость и пылимость.
Способ проиллюстрирован следующими примерами.
Пример 1. Апатитовый концентрат состава (% мас.): 39,0 P2O5; 52,0 CaO; 3,1 Al2О3; 0,35 MgO; 0,9 K2O; 3,2 F; 1,5 SiO2 в количестве 1000 кг разлагают серной кислотой концентрации 93% мас. в количестве 978,5 кг в присутствии раствора разбавления для создания требуемого соотношения жидкой и твердой фаз. Образовавшуюся в процессе экстракции Р2О5 фосфатную реакционную пульпу делят на два потока, один из которых направляют на фильтрацию с получением 28,5%-ной по P2O5 фосфорной кислоты в количестве 500,35 кг. Второй поток в виде реакционной пульпы с концентрацией 19,8% P2O5 в количестве 893,94 кг смешивают с полученной при фильтровании фосфорной кислотой, и смесь в количестве 1394,3 кг подают в реактор разложения низкосортного фосфатного сырья. В этот же реактор подают егорьевскую фосфоритную муку состава (% мас.): 20,5 P2O5; 33,7 CaO; 5,43 Fe2О3общ.; 4,12 Al2O3; 2,5 CO2; 1,85 F; 19,9 SiO2; 0,99 H2O в количестве 211,22 кг, что соответствует соотношению Р2O5 смеси к P2O5 фосмуки, равному 9:1. В этот же реактор подают серную кислоту концентрации 93% H2SO4 в количестве 103,6 кг. Образовавшуюся пульпу разложения, за вычетом выделения в газовую фазу 5,28 кг CO2, в количестве 1600,23 кг направляют на аммонизацию в трубчатый реактор до рН 4,2. Аммиак подается в жидком виде в количестве 136,7 кг NH3. Полученная аммонизированная фосфатная пульпа в количестве 1736,93 кг (без учета испарения воды в ТР) поступает на грануляцию и сушку. Получают готовый продукт с влажностью 1% в количестве 1468,7 кг с содержанием 29,8% Р2O5общ.; 29,26% Р2O5усв.; 25,53% Р2O5водн.; 7,23% Naмм. Прочность гранул полученного сложного удобрения на раздавливание составляет 9,5 МПа.
Пример 2. Апатитовый концентрат состава (% мас.): 39,0 P2O5; 52,0 CaO; 3,1 Al2О3; 0,35 MgO; 0,9 K2O; 3,2 F; 1,5 SiO2 в количестве 1000 кг разлагают серной кислотой концентрации 93% мас. в количестве 978,5 кг в присутствии раствора разбавления для создания требуемого соотношения жидкой и твердой фаз. Образовавшуюся в процессе экстракции P2O5 фосфатную реакционную пульпу делят на два потока, один из которых направляют на фильтрацию с получением 28,5%-ной по P2O5 фосфорной кислоты в количестве 500,35 кг. Второй поток в виде реакционной пульпы с концентрацией 19,8% P2O5 в количестве 893,94 кг смешивают с полученной при фильтровании фосфорной кислотой и смесь в количестве 1394.3 кг подают в реактор разложения низкосортного фосфатного сырья. В этот же реактор подают егорьевскую фосфоритную муку состава (% мас.): 20,5 P2O5; 33,7 CaO; 5,43 Fe2О3общ.; 4,12 Al2O3; 2,5 СО2; 1,85 F; 19,9 SiO2; 0,99 Н2О в количестве 475,6 кг, что соответствует соотношению Р2О5 смеси к Р2О5 фосмуки, равному 4:1. В этот же реактор подают серную кислоту концентрации 93% H2SO4 в количестве 232,23 кг. Образовавшуюся пульпу разложения за вычетом выделения в газовую фазу 11,88 кг СО2 в количестве 2090 кг направляют на аммонизацию в трубчатый реактор до рН 4,6. Аммиак подается в жидком виде в количестве 166,1 кг NH3. Полученная аммонизированная фосфатная пульпа в количестве 2256,1 кг (без учета испарения воды в ТР) поступает на грануляцию и сушку. Получают готовый продукт с влажностью 1% в количестве 1948,2 кг с содержанием 25,84% Р2O5общ.; 24,8% Р2O5усв.; 18,06% Р2O5водн.; 6,87% Naмм. Прочность гранул полученного сложного удобрения на раздавливание составляет 10,3 МПа.
Пример 3. Апатитовый концентрат состава (% мас.): 39,0 P2O5; 52,0 CaO; 3,1 Al2О3; 0,35 MgO; 0,9 K2O; 3,2 F; 1,5 SiO2 в количестве 1000 кг разлагают серной кислотой концентрации 93% мас. в количестве 978,5 кг в присутствии раствора разбавления для создания требуемого соотношения жидкой и твердой фаз. Образовавшуюся в процессе экстракции P2O5 фосфатную реакционную пульпу делят на два потока, один из которых направляют на фильтрацию с получением 28,5%-ной по P2O5 фосфорной кислоты в количестве 500,35 кг. Второй поток в виде реакционной пульпы с концентрацией 19,8% Р2О5 в количестве 893,94 кг смешивают с полученной при фильтровании фосфорной кислотой, и смесь в количестве 1394,3 кг предварительно смешивается с серной кислотой концентрации 93% H2SO4 в количестве 390,11 кг. Далее полученную сернофосфорнокислотную пульпу передают на разложение низкосортного фосфатного сырья - верхнекамской фосфоритной муки состава (% мас.): 22,1 Р2O5; 35,6 CaO; 3,9 Р2О3; 4,1 Al2O3; 1,4 MgO; 4,6 CO2; 2,6 F; 15,4 SiO2; 0,96 H2O, взятой в количестве 756,3 кг, что обеспечивает соотношение P2O5 смеси к P2O5 фосмуки, равное 2,3:1. Пульпу разложения в количестве 2540,71 кг за вычетом 34,79 кг CO2, выделившегося в газовую фазу, направляют в трубчатый реактор на аммонизацию до мольного соотношения NH3:Н3PO4, равного 0,99 жидким NH3 (100% NH3) в количестве 191,19 кг. Полученную NP-пульпу в количестве 2731,9 кг с рН 5,0 передают на грануляцию и сушку в аппарат барабанного типа. Готовый продукт с влажностью 1% в количестве 2422,31 кг содержит 22,76% Р2O5общ.; 21,60% Р2O5усв.; 12,53% Р2O5водн.; 6,44% Naмм. при статической прочности гранул 11,8 МПа.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ СЛОЖНЫХ УДОБРЕНИЙ | 2007 |
|
RU2330003C1 |
СПОСОБ ПОЛУЧЕНИЯ ОДНОСТОРОННЕГО ФОСФОРНОГО УДОБРЕНИЯ ИЗ БЕДНОГО ФОСФАТНОГО СЫРЬЯ | 2007 |
|
RU2346916C1 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ НИЗКОСОРТНОГО ФОСФАТНОГО СЫРЬЯ МЕСТОРОЖДЕНИЯ УНЕЧА | 2004 |
|
RU2283820C2 |
СПОСОБ ПОЛУЧЕНИЯ ФОСФОРНЫХ УДОБРЕНИЙ | 1997 |
|
RU2116991C1 |
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО СУПЕРФОСФАТА | 2001 |
|
RU2195439C1 |
СПОСОБ ПОЛУЧЕНИЯ МОНОАММОНИЙФОСФАТА | 2004 |
|
RU2259941C1 |
СПОСОБ ПОЛУЧЕНИЯ СЛОЖНЫХ УДОБРЕНИЙ | 2000 |
|
RU2167843C2 |
СПОСОБ ПОЛУЧЕНИЯ АММОФОСА | 2009 |
|
RU2420453C1 |
СПОСОБ ПОЛУЧЕНИЯ СЛОЖНЫХ УДОБРЕНИЙ | 2005 |
|
RU2286320C1 |
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО СУПЕРФОСФАТА | 2001 |
|
RU2177464C1 |
Изобретение относится к способу получения сложного гранулированного удобрения, а именно NP-удобрения типа суперфосфатов. Способ получения гранулированного сложного удобрения включает разложение апатита серной кислотой с получением фосфатной пульпы, которую делят на две части. Из одной части фосфатной пульпы фильтрацией отделяют фосфорную кислоту, которую затем смешивают с оставшейся частью фосфатной пульпы. В смесь вводят низкосортное фосфатное сырье и серную кислоту, при этом соотношение P2O5смеси : P2O5 низкосортного фосфатного сырья берут равным (2-9):1, а затем полученную пульпу аммонизируют до рН 4,0-5,0, гранулируют и сушат готовый продукт. Технический результат заключается в получении удобрения пролонгированного действия с улучшенными физико-механическими свойствами. При получении удобрения использовано низкосортное фосфатное сырье. 1 з.п. ф-лы.
Способ получения гранулированного суперфосфата | 1987 |
|
SU1465436A1 |
Способ переработки природного кальцийфосфата | 1975 |
|
SU763304A1 |
Способ получения сложного удобрения | 1991 |
|
SU1787153A3 |
СПОСОБ ПОЛУЧЕНИЯ СЛОЖНЫХ УДОБРЕНИЙ | 1999 |
|
RU2145316C1 |
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО СУПЕРФОСФАТА | 1995 |
|
RU2102361C1 |
US 3785797 A, 05.09.1972 | |||
Способ нагрева проводов электрических воздушных линий передачи | 1932 |
|
SU39241A1 |
Авторы
Даты
2008-01-10—Публикация
2006-03-29—Подача