СПОСОБ ОТБОРА МИКРООРГАНИЗМОВ, ОБЛАДАЮЩИХ ПОВЫШЕННОЙ УСТОЙЧИВОСТЬЮ К КАТИОННЫМ АНТИМИКРОБНЫМ ПЕПТИДАМ И СЫВОРОТКЕ КРОВИ Российский патент 2008 года по МПК C12Q1/04 

Описание патента на изобретение RU2315112C1

Изобретение относится к промышленной микробиологии и биотехнологии и может быть использовано для отбора референс-культур микроорганизмов с целью тестирования антимикробной активности катионных антимикробных пептидов, выделенных из различных источников или синтезированных de novo.

Рост инфекций, вызванных микроорганизмами, проявляющими устойчивость ко многим антимикробным препаратам [1, 2], диктует необходимость расширения арсенала лекарственных средств, обладающих микробицидным действием [3].

Известно, что выраженным антимикробным действием обладают катионные пептиды, выделенные из тканей животных и человека [4].

Известно использование антимикробных пептидов, выделенных из тканей человека [5], крупного рогатого скота [6], мыши [7], а также синтетических и рекомбинантных пептидов [8] для лечения и профилактики инфекционных заболеваний.

Однако в настоящее время к антимикробным пептидам растет уровень устойчивости среди различных микроорганизмов [9], что диктует необходимость скрининг-отбора штаммов, обладающих повышенной устойчивостью к бактерицидному действию антимикробных пептидов и сыворотки крови (как одного из источников получения антимикробных пептидов [10]), с целью создания оптимальных методик преодоления данной резистентности.

Известен способ отбора микроорганизмов, обладающих повышенной устойчивостью к катионным антимикробным пептидам, путем серийных пассажей штаммов микроорганизмов в среде, содержащей антимикробные пептиды [11].

Однако указанный способ является длительным по времени и сохраняет стабильность устойчивости микроорганизмов к катионным антимикробным пептидам только в течение нескольких пересевов [12].

Известно получение микроорганизмов, устойчивых к катионным антимикробным пептидам, основанное на конструировании штаммов методом транспозонного мутагенеза [13, 14] или создании плазмид, несущих детерминанты устойчивости, с последующей гомологичной рекомбинацией [14, 15].

Однако указанные способы являются трудоемкими, требуют наличия специальной аппаратуры и генетического банка бактериальных плазмид и плазмидных векторов.

Заявляемый способ решает задачу упрощения методов отбора микроорганизмов, обладающих повышенной устойчивостью к катионным антимикробным пептидам и сыворотке крови, и сокращения времени отбора данных микроорганизмов.

Для решения указанной задачи в заявляемом способе отбора микроорганизмов, обладающих повышенной устойчивостью к катионным антимикробным пептидам и сыворотке крови, из чистых культур микроорганизмов готовят взвеси, добавляют взвесь микроорганизмов в двухфазную систему «жидкость-жидкость» с несмешивающимися водными фазами, обогащенными полиэтиленгликолем и декстраном, встряхивают, инкубируют, отбирают фазу, содержащую декстран, и лиофилизируют.

Новым в заявляемом способе является то, что из чистых культур микроорганизмов готовят взвеси, добавляют взвесь микроорганизмов в двухфазную систему «жидкость-жидкость» с несмешивающимися водными фазами, обогащенными полиэтиленгликолем и декстраном, встряхивают, инкубируют, отбирают фазу, содержащую декстран, и лиофилизируют.

Достигаемый при осуществлении изобретения технический результат состоит в том, что заявляемый способ путем разделения микроорганизмов в двухфазной системе «жидкость-жидкость» с несмешивающимися водными фазами, обогащенными полиэтиленгликолем и декстраном, позволяет сократить сроки получения микроорганизмов, обладающих повышенной устойчивостью к катионным антимикробным пептидам и сыворотке крови.

Авторами экспериментально установлено, что при разделении микроорганизмов в двухфазной системе «жидкость-жидкость» с несмешивающимися водными фазами, обогащенными полиэтиленгликолем и декстраном, в фазе, содержащей декстран, находятся микроорганизмы, обладающие повышенной устойчивостью к сыворотке крови.

Проводился следующий эксперимент. Из суточных агаровых культур Esherichia coli (n=19) в физиологическом растворе готовили микробные взвеси, содержащие 109 КОЕ/мл. Двухфазную систему «жидкость-жидкость» с несмешивающимися водными фазами, обогащенными полиэтиленгликолем и декстраном, готовили известным способом [16]. В 2 мл двухфазной системы вносили 0,5 мл микробной взвеси, шуттелировали в течение 2 минут, инкубировали в течение 10 минут при 37°С. Отбирали по 0,6 мл фракций, содержащих полиэтиленгликоль и декстран, добавляли к каждой фракции по 1,2 мл физиологического раствора. К каждой фракции добавляли 0,2 мл сыворотки крови в разведении 1:1, инкубировали при 37°С, добавляли 2 мл мясопептонного бульона, инкубировали при 37°С в течение 3 часов и замеряли оптические плотности выросших культур на спектрофотометре СФ-46 (λ=540 нм). В контрольные пробы вместо сыворотки крови добавляли равный объем физиологического раствора. Устойчивость бактерий к сыворотке крови рассчитывали по индексу резистентности (ИндР, %) известным способом [17]. Результаты эксперимента представлены в таблице 1. Как видно из таблицы 1, клетки бактерий E.coli, полученные из декстрансодержащей фракции, являются достоверно более устойчивыми к бактерицидному действию сыворотки крови, чем клетки, полученные из полиэтиленгликольсодержащей фракции.

Таблица 1.
Устойчивость Esherichia coli из различных фракций двухфазной системы к сыворотке крови
Число наблюденийOD выросших культурИндекс резистентностиКонтрольОпыт (фракция декстрана)Опыт
(фракция полиэтиленгликоля)
Фракция декстранаФракция полиэтиленгликоля
190,51±0,060,31±0,08*0,18±0,070,62±0,07*0,37±0,06* P<0,01

Способ осуществляется следующим образом.

Из чистых агаровых или бульонных культур микроорганизмов готовят микробные взвеси. В двухфазную систему «жидкость-жидкость» с несмешивающимися водными фазами, обогащенными полиэтиленгликолем и декстраном, вносят микробную взвесь, встряхивают на вортексе, инкубируют при 37°С в течение 10-15 минут. Отбирают фазу, содержащую декстран, и лиофилизируют.

Примеры конкретного выполнения способа.

Пример 1. Из коллекции Института клеточного и внутриклеточного симбиоза УрО РАН были взяты 10 штаммов Staphylococcus epidermidis. Из суточных агаровых культур бактерий приготовили микробные взвеси. Внесли по 0,5 мл микробной взвеси в 2 мл двухфазной системы «жидкость-жидкость» с несмешивающимися водными фазами, обогащенными полиэтиленгликолем и декстраном. Встряхнули в течение 2 минут на вортексе, проинкубировали при 37°С в течение 15 минут, отобрали фазу, содержащую декстран, и лиофилизировали. Параллельно определили индекс резистентности стафилококков из полиэтиленгликоль- и декстрансодержащих фракций к антимикробному белку тромбоцитов (АБТ) и лейкоцитарным катионным белкам (ЛКБ). Антимикробный белок тромбоцитов и лейкоцитарные катионные белки получили известными способами [18, 19]. Для определения индекса резистентности отобрали по 0,6 мл фракций, содержащих полиэтиленгликоль и декстран, добавили к каждой фракции по 1,2 мл физиологического раствора. К каждой фракции добавляли 0,2 мл разведения антимикробных пептидов в концентрации 5 мг/мл для ЛКБ и 140 мкг/мл для АБТ, инкубировали при 37°С, добавляли 2 мл мясопептонного бульона, инкубировали при 37°С в течение 3 часов и замеряли оптические плотности выросших культур на спектрофотометре СФ-46 (λ=540 нм). В контрольные пробы вместо сыворотки крови добавляли равный объем физиологического раствора. Устойчивость бактерий к сыворотке крови рассчитывали по индексу резистентности (ИндР, %) известным способом [17].

Результаты представлены в таблице 2.

Таблица 2.
Устойчивость S.epidermidis (n=10) из различных фракций двухфазной системы к антимикробным пептидам
Антимикробные пептидыИндекс резистентностиФракция декстранаФракция полиэтиленгликоляАБТ0,86±0,07*0,45±0,08ЛКБ0,84±0,05*0,34±0,05* P<0,01

Пример 2. Из коллекции Института клеточного и внутриклеточного симбиоза были взяты 14 штаммов E.coli. Отбор микроорганизмов, обладающих повышенной устойчивостью к катионным антимикробным пептидам и сыворотке крови, осуществили согласно примеру 1.

Параллельно определили индекс резистентности бактерий из полиэтиленгликоль- и декстрансодержащих фракций к сыворотке крови (разведение 1:1), АБТ (в концентрации 280мкг/мл) и ЛКБ (в концентрации 10 мг/мл) согласно примеру 1.

Результаты представлены в таблице 3.

Таблица 3.
Устойчивость E.coli (n=14) из различных фракций двухфазной системы к антимикробным пептидам и сыворотке крови
Антимикробные факторыИндекс резистентностиФракция декстранаФракция полиэтиленгликоляАБТ0,89±0,05*0,59±0,05ЛКБ1,04±0,02*0,68±0,05Сыворотка крови0,65±0,07*0,38±0,07* P<0,01

Таким образом, использование заявляемого способа позволяет эффективно и быстро отобрать микроорганизмы, обладающие повышенной устойчивостью к катионным антимикробным пептидам и сыворотке крови.

Источники информации

1. Shailaja V.V., Himabindu V., Anuradha К. et al. In vitro activity of gatifloxacin against gram negative clinical isolates in a tertiary care hospital // Indian J. Med. Microbiol. - 2004. - Vol.22. - P.222-225.

2. Дерябин Д.Г. Стафилококки: экология и патогенность. - Екатеринбург: УрО РАН, 2000. - С.174-186.

3. Mosca D.A., Hurst M.A., So W. et al. IB-367, a protegrin peptide with in vitro and in vivo activities against the microflora associated with oral mucositis // Antimicrob. Agents Chemother. - 2000. - Vol.44. - P.1803-1808.

4. Hancock R.E.W., Scott M.G. The role of antimicrobial peptides in animal defenses // PNAS. - 2000. - Vol.97. - P.8856-8861.

5. US Patent 5338724, A 61 K 037/02, 16.08.1994.

6. US Patent 6211148, А 61 К 038/16, 03.04.2001.

7. US Patent 6008195, С 07 К 007/08, 28.12.1999.

8. US Patent 6838435, А 61 К 38/00, 04.01.2005.

9. Bell G., Gouyon P.-H. Arming the enemy: the evolution of resistance to self-proteins // Microbiology. - 2003. - Vol.149. - P.1367-1375.

10. Levy O. Antimicrobial proteins and peptides of blood: templates for novel antimicrobial agents // Blood. - 2000. - Vol.96. - P.2664-2672.

11. Yeaman M.R., Norman D.C., Bayer A.S. Platelet microbicidal protein enhances antibiotic-induced killing of and postantibiotic effect in Staphylococcus aureus // Antimicrob. Agents Chemother. - 1992. - Vol.36. - P.1665-1670.

12. Yeaman M.R., Sullam P.M., Dazin P.F., Bayer A.S. Platelet microbicidal protein alone and in combination with antibiotics reduces Staphylococcus aureus adherence to platelets in vitro // Infect. Immun. - 1994. - Vol.62. - P.3416-3423.

13. Dhawan V.K., Yeaman M.R., Cheung A.L. et al. Phenotypic resistance to thrombin-induced platelet microbicidal protein in vitro is correlated with enhanced virulence in experimental endocarditis due to Staphylococcus aureus // Infect. Immun. - 1997. - Vol.65. - P.3293-3299.

14. Peschel A., Jack R.W., Otto M. et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine // J.Exp. Med. - 2001. - Vol.193. - P.1067-1076.

15. Macfarlane E.L.A., Kwasnicka A., Hancock R.E.W. Role of Pseudomonas aeruginosa PhoP-PhoQ in resistance to antimicrobial cationic peptides and aminoglycosides // Microbiology. - 2000. - Vol.146. - P.2543-2554.

16. Magnusson K.E., Stendahl O., Tagesson С. et al. The tendency of smooth and rough Salmonella typhimurium bacteria and lipopolysaccharide to hydrophobic and ionic interaction, as studied in aqueous polymer two-phase systems // Acta Pathol. Microbiol. Scand. (B). - 1977. - Vol.85. - P.212-218.

17. Гриценко В.А., Гриценко Я.В. Чувствительность и адаптация стафилококков к бактерицидному действию катионного белка лейкоцитов ″интерцида″ // Вестник Оренбургского государственного университета. - 2005. - №5 (Приложение «Биология и медицина»). - С.19-22.

18. Бухарин О.В., Черешнев В.А., Сулейманов К.Г. Антимикробный белок тромбоцитов. - Екатеринбург: УрО РАН, 2000. - С.35-99.

19. Ganz Т. Extracellular release of antimicrobial defensins by human polymorphonuclear leucocytes // Infect. Immun. - 1987. - Vol.55. - P.568-571.

Похожие патенты RU2315112C1

название год авторы номер документа
АНТИМИКРОБНОЕ СРЕДСТВО И ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ, СОДЕРЖАЩАЯ ЭФФЕКТИВНОЕ КОЛИЧЕСТВО АНТИМИКРОБНОГО СРЕДСТВА 2005
  • Иванов Юрий Борисович
  • Черкасов Сергей Викторович
  • Бухарин Олег Валерьевич
RU2278675C1
СПОСОБ ДИФФЕРЕНЦИАЦИИ МИКРОФЛОРЫ УРОГЕНИТАЛЬНОГО ТРАКТА ЧЕЛОВЕКА 2004
  • Иванов Ю.Б.
  • Черкасов С.В.
  • Кузьмин М.Д.
  • Бухарин О.В.
RU2260054C1
ПРОТИВООПУХОЛЕВОЕ СРЕДСТВО 2009
  • Иванов Юрий Борисович
  • Мирошников Сергей Александрович
  • Лебедев Святослав Валерьевич
  • Нотова Светлана Викторовна
  • Сипайлова Ольга Юрьевна
  • Гриценко Виктор Александрович
RU2419451C1
СПОСОБ ЛЕЧЕНИЯ ГНОЙНОГО ХОЛАНГИТА 2008
  • Третьяков Анатолий Андреевич
  • Гриценко Виктор Александрович
  • Черников Дмитрий Александрович
  • Иванов Юрий Борисович
RU2404825C2
СПОСОБ ПРОГНОЗИРОВАНИЯ РАЗВИТИЯ ГНОЙНО-ВОСПАЛИТЕЛЬНЫХ ОСЛОЖНЕНИЙ У БОЛЬНЫХ ГНОЙНЫМ ХОЛАНГИТОМ В ПОСЛЕОПЕРАЦИОННОМ ПЕРИОДЕ 2009
  • Гриценко Виктор Александрович
  • Иванов Юрий Борисович
  • Третьяков Анатолий Андреевич
  • Черников Дмитрий Александрович
RU2399054C1
СПОСОБ ПОЛУЧЕНИЯ АНТИМИКРОБНЫХ ПЕПТИДОВ С ПОНИЖЕННОЙ ГЕМОЛИТИЧЕСКОЙ АКТИВНОСТЬЮ 2006
  • Полянский Антон Александрович
  • Волынский Павел Евгеньевич
  • Василевский Александр Александрович
  • Воронцова Ольга Валентиновна
  • Козлов Сергей Александрович
  • Феофанов Алексей Валерьевич
  • Арсеньев Александр Сергеевич
  • Гришин Евгений Васильевич
  • Ефремов Роман Гербертович
RU2316336C1
СПОСОБ ВЫЯВЛЕНИЯ ПРОДУКЦИИ МИКРООРГАНИЗМАМИ ИНГИБИТОРОВ АНТИМИКРОБНОГО БЕЛКА ТРОМБОЦИТОВ (β-ЛИЗИНА) 2007
  • Иванов Юрий Борисович
  • Черкасов Сергей Викторович
  • Гриценко Виктор Александрович
  • Дерябин Дмитрий Геннадьевич
RU2351654C2
ПЕПТИДЫ ЛАТАРЦИНЫ, ПРОЯВЛЯЮЩИЕ АНТИМИКРОБНУЮ АКТИВНОСТЬ 2006
  • Козлов Сергей Александрович
  • Василевский Александр Александрович
  • Воронцова Ольга Валентиновна
  • Полянский Антон Александрович
  • Волынский Павел Евгеньевич
  • Феофанов Алексей Валерьевич
  • Ефремов Роман Гербертович
  • Арсеньев Александр Сергеевич
  • Гришин Евгений Васильевич
RU2306148C1
ПЕПТИДЫ ЛАТАРЦИНЫ, ПРОЯВЛЯЮЩИЕ АНТИМИКРОБНУЮ АКТИВНОСТЬ 2006
  • Козлов Сергей Александрович
  • Василевский Александр Александрович
  • Самсонова Ольга Вячеславовна
  • Полянский Антон Александрович
  • Волынский Павел Евгеньевич
  • Феофанов Алексей Валерьевич
  • Ефремов Роман Гербертович
  • Арсеньев Александр Сергеевич
  • Гришин Евгений Васильевич
RU2319745C1
БЕТА-ШПИЛЕЧНЫЙ ПОЛИПЕПТИД, ОБЛАДАЮЩИЙ АНТИМИКРОБНОЙ АКТИВНОСТЬЮ 2015
  • Пантелеев Павел Валерьевич
  • Баландин Сергей Владимирович
  • Болосов Илья Александрович
  • Овчинникова Татьяна Владимировна
RU2624020C2

Реферат патента 2008 года СПОСОБ ОТБОРА МИКРООРГАНИЗМОВ, ОБЛАДАЮЩИХ ПОВЫШЕННОЙ УСТОЙЧИВОСТЬЮ К КАТИОННЫМ АНТИМИКРОБНЫМ ПЕПТИДАМ И СЫВОРОТКЕ КРОВИ

Изобретение относится к промышленной микробиологии и биотехнологии может быть использовано для отбора референс-культур микроорганизмов с целью тестирования антимикробной активности катионных антимикробных пептидов, выделенных из различных источников или синтезированных de novo, а также антимикробной активности сыворотки крови различного происхождения. Взвесь микроорганизмов вносят в двухфазную систему "жидкость-жидкость" с несмешивающимися водными фазами, обогащенными полиэтиленгликолем и декстраном, и инкубируют. Отбирают декстрансодержащую и полиэтиленгликольсодержащую фазы и определяют индекс резистентности микроорганизмов к катионным антимикробным пептидам и сыворотке крови. Отбирают микроорганизмы из декстрансодержащей фазы с индексом резистентности 0,58-1,06. Изобретение позволяет эффективно и быстро отобрать микроорганизмы, обладающие повышенной устойчивостью к катионным антимикробным пептидам и сыворотке крови. 3 табл.

Формула изобретения RU 2 315 112 C1

Способ отбора микроорганизмов, обладающих повышенной устойчивостью к катионным антимикробным пептидам и сыворотке крови, характеризующийся тем, что из чистой культуры микроорганизма готовят взвесь, добавляют ее в двухфазную систему "жидкость-жидкость" с несмешивающимися водными фазами, обогащенными полиэтиленгликолем и декстраном, встряхивают, инкубируют, отбирают декстрансодержащую и полиэтиленгликольсодержащую фазы и определяют индекс резистентности исследуемых микроорганизмов к катионным антимикробным пептидам и сыворотке крови, при этом отбирают микроорганизмы из декстрансодержащей фазы с индексом резистентности 0,58-1,06.

Документы, цитированные в отчете о поиске Патент 2008 года RU2315112C1

YEMAN M.R., NORMAN D.C., BAYER A.S
Platelet microbicidal protein enhances antibiotic-induced killing of and postantibiotic effekt in Staphylococcus aureus
Antimicrob
Agents Chemother, 1992, v
Коридорная многокамерная вагонеточная углевыжигательная печь 1921
  • Поварнин Г.Г.
  • Циллиакус А.П.
SU36A1
YEMAN M.R., SULLAM P.M., DAZIN P.F., BAYER A.S
Platelet microbicidal protein alone and in combination with antibiotics reduces

RU 2 315 112 C1

Авторы

Иванов Юрий Борисович

Гриценко Виктор Александрович

Бухарин Олег Валерьевич

Даты

2008-01-20Публикация

2006-03-06Подача