СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОДА ИЗ ДИОКСИДА СВИНЦА Российский патент 2008 года по МПК C25B11/16 

Описание патента на изобретение RU2318080C1

Использование: в химических источниках тока в качестве положительного электрода, в гальваническом производстве в качестве нерастворимого анода, устойчивого в сильнокислых средах, содержащих в качестве окислителя соединения шестивалентного хрома и нитрат-ионы. Устойчив в качестве анодного материала в растворе осветления цинковых и кадмиевых покрытий, содержащем серную и азотную кислоты, хромовый ангидрид и хлорид-ионы. Рекомендуется использовать в процессах регенерации хроматных растворов (осветление и пассивирование) и для извлечения из промывных вод хромат- и бихромат-ионов, которые поступают туда в результате промывки изделий водой после проведения технологических операций в ваннах, содержащих растворы и электролиты на основе соединений шестивалентного хрома: хромирование, пассивирование, осветление, травление и т.п., особенно для растворов, содержащих высокую концентрацию азотной кислоты, в которых анод из платинированного титана или платинированного ниобия нестоек. Возможно использование в качестве анодного материала в средах, содержащих соединения фтора, например, фторид-, гексафторосилициат- и тетрафторобориат-анионы.

Сущность изобретения: из уровня техники известны диоксид-свинцовые титановые аноды и способы их получения [1-2]. В качестве подложки для нанесения слоя диоксида свинца можно использовать и ниобий. Диоксид свинца на титан наносится электрохимическим способом из кислых, нейтральных и щелочных электролитов, содержащих соединения двухвалентного свинца. С целью получения прочного сцепления диоксида свинца с титановой основой последняя делается шероховатой и/или сетчатой, а в электролит вводятся различные добавки. Максимальная толщина полученного покрытия составляет, как правило, десятые доли мм, и покрытие, как правило, получается не монолитным, а содержащим большое количество микротрещин и пор. С течением времени омическое сопротивление между титаном и слоем из диоксида свинца возрастает, что связано с окислением поверхности титана до диоксида титана, обладающего большим сопротивлением. Для предотвращения увеличения возрастания омического сопротивления между подложкой из титана и слоем диоксида свинца разработаны составы промежуточного электропроводного слоя на основе оксидов сурьмы, и олова, и благородных металлов [1 - стр.13, 2 - стр.372]. Во всех случаях, как при получении, так и при использовании данных электродов, практически весь ток идет через титановую основу.

Предлагаемый способ изготовления электрода из диоксида свинца заключается в том, что на очищенную поверхность титановой основы электрохимическим способом из концентрированных растворов нитрата свинца осаждается предварительный тонкий, не более 0,05-0,1 мм толщины, слой диоксида свинца. Электрический контакт в процессе электролиза осуществляется за свободный конец титанового электрода. Далее на поверхность диоксида свинца плотно наматывается тонкая медная проволока в пластмассовой химически стойкой изоляции (диаметром примерно 1,0 мм), например, из полиэтилена. Намотка осуществляется по всей поверхности электрода в один слой с шагом намотки, равным диаметру проволоки. При осуществлении намотки в два слоя намотка второго слоя поверх первого идет под острым углом к первому. Концы проволоки надежно изолируются и закрепляются. Далее продолжают процесс осаждения диоксида свинца электрохимическим способом из того же раствора, из которого получен первый слой, уменьшая силу тока во столько же раз, во сколько уменьшилась площадь видимой поверхности слоя из диоксида свинца на электроде. По мере зарастания проволоки слоем диоксида свинца силу тока увеличивают для того, чтобы сохранить постоянное значение анодной плотности тока. В результате электролиза получается армированный слой диоксида свинца, обладающий повышенной прочностью по сравнению с чистым монолитным слоем из диоксида свинца. Поверх армированного слоя необходимо осадить еще 2-3 мм основного рабочего слоя из диоксида свинца. Суммарная толщина слоя из диоксида свинца достигает 5-6 мм. При армировании изолированной проволокой слоя из диоксида свинца омическое сопротивление между титаном и рабочим слоем из диоксида свинца еще больше увеличивается. Электрический контакт к изготовленному таким образом электроду осуществляется следующим образом. Часть поверхности из диоксида свинца плотно охватывается мягкой фольгой из металла, который сам либо не окисляется, либо его высшие оксиды обладают достаточно высокой электропроводностью. К таким металлам относится платина, золото, серебро, никель и ряд других металлов. Вместо никеля или серебра можно использовать никелированную или посеребренную фольгу из меди или из другого достаточно электропроводного металла. Поверх никелевой фольги плотно прикрепляется, например, путем намотки медная проволока, через которую осуществляется электрический контакт. Место контакта тщательно изолируется химически стойкой изоляцией, например химически стойким силиконовым герметиком. После перехода слоя герметика в упругое состояние он дополнительно обжимается с целью дальнейшего уплотнения, например, путем намотки слоя изолированной медной проволоки, поверх которого наносится слой химически стойкого герметика. Подобная герметизация электрического контакта позволяет в случае необходимости полностью погружать электрод в обрабатываемый раствор на длительное время. Преднамеренное увеличение омического сопротивления между рабочим слоем из диоксида свинца и поверхностью титановой основы электрода и осуществление электрического контакта через диоксид свинца снаружи электрода приводит к тому, что практически весь подводимый к электроду электрический ток идет по рабочему слою из диоксида свинца. Этому способствует также относительно невысокая электропроводность титана. Описанная конструкция нерастворимого электрода позволяет использовать его в качестве анода в сильнокислых окислительных средах, содержащих нитрат-ионы. Химическая стойкость подложки электрода значительно увеличивается при замене титана на ниобий или тантал. В случае заметного износа рабочего слоя из диоксида свинца толщина последнего восстанавливается с помощью электролиза раствора нитрата свинца.

Изобретение относится к способу получения нерастворимого электрода с рабочим слоем из диоксида свинца, нанесенным на основу из титана, ниобия или тантала.

Целью изобретения является разработка электрода, который используется в качестве нерастворимого анода в сильнокислых растворах, содержащих окислители, например в растворе осветления цинка и кадмия, на основе серной и азотной кислот и хромового ангидрида.

Источники информации

[1] Прикладная электрохимия. / Под ред. д.т.н., проф. А. П. Томилова. - 3-е изд., перераб. - М.: Химия, 1984, 520 с.

[2] Химические источники тока. Справочник. / Под ред. Н.В. Коровина, А.М. Скундина. М.: Изд. МЭИ, 2003 г., 740 с.

Похожие патенты RU2318080C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОДА ИЗ АРМИРОВАННОГО ДИОКСИДА СВИНЦА 2019
  • Тураев Дмитрий Юрьевич
RU2691967C1
АНОДНЫЙ ЗАЗЕМЛИТЕЛЬ 2013
  • Сериков Сергей Владимирович
  • Притула Всеволод Всеволодович
  • Носач Николай Алексеевич
  • Троценко Владислав Иванович
  • Уразгильдеев Рустам Ибрагимович
RU2542867C2
ЭЛЕКТРОЛИЗЁР 2015
  • Абрамов Алексей Михайлович
  • Соболь Юрий Борисович
  • Галиева Жанетта Николаевна
  • Солодовников Александр Вячеславович
  • Семенов Андрей Анатольевич
  • Геря Владимир Олегович
  • Ермаков Александр Владимирович
  • Игумнов Михаил Степанович
RU2605751C1
СПОСОБ ИЗГОТОВЛЕНИЯ НЕРАСТВОРИМОГО АНОДА НА ТИТАНОВОЙ ОСНОВЕ 2011
  • Уразгильдеев Руслан Ибрагимович
  • Сериков Сергей Владимирович
  • Троценко Владислав Иванович
  • Носач Николай Алексеевич
  • Чубаров Андрей Иванович
RU2468126C1
АНОДНЫЙ ЗАЗЕМЛИТЕЛЬ 1996
  • Крыщенко К.И.
  • Дзегиленок В.Н.
  • Нейланд А.Б.
RU2101388C1
РЕГЕНЕРАЦИЯ СОЛЯНОКИСЛОГО МЕДНО-ХЛОРИДНОГО РАСТВОРА ТРАВЛЕНИЯ МЕДИ МЕТОДОМ МЕМБРАННОГО ЭЛЕКТРОЛИЗА 2019
  • Тураев Дмитрий Юрьевич
RU2709305C1
Гибкая микробатарея 2018
  • Одебер Жан-Франсуа
  • Каннер Захари
  • Пальяро Леонард
  • Вайнштейн Лоуренс Эдвард
  • Петерсон Серена
  • Ховарт Джонатан
RU2683593C1
БАТАРЕИ БИОМЕДИЦИНСКОГО УСТРОЙСТВА С ЭЛЕКТРООСАЖДЕННЫМИ КАТОДАМИ 2017
  • Беяд Ясер
  • Донн Скотт
  • Муту Миллберн Эбенезер
  • Пью Рэндалл Б.
  • Тонер Адам
RU2682482C1
ТРУБЧАТЫЙ АНОДНЫЙ ЗАЗЕМЛИТЕЛЬ 2018
  • Геллерштейн Игорь Робертович
  • Тольпин Евгений Сергеевич
  • Паршин Сергей Александрович
  • Тарасевич Марина Васильевна
  • Богданченко Виктор Анатольевич
  • Ибрагимова Виктория Владимировна
  • Липкин Валерий Михайлович
RU2677199C1
ГИБКАЯ МИКРОБАТАРЕЯ 2018
  • Одебер Жан-Франсуа
  • Флитш Фредерик А.
  • Каннер Захари
  • Муту Миллберн Эбензер
  • Пагиларо Леонард
  • Пью Рэндалл Б.
  • Вайнштейн Лоуренс Эдвард
  • Петерсон Серена
  • Ховарт Джонатан
RU2682724C1

Реферат патента 2008 года СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОДА ИЗ ДИОКСИДА СВИНЦА

Изобретение относится к изготовлению нерастворимого электрода с рабочим слоем из диоксида свинца, используемого в качестве анода в химических источниках тока, в гальваническом производстве, в процессах регенерации хроматных растворов и других электрохимических процессах. На поверхность основы электрода из титана, ниобия или тантала электрохимическим способом осаждают предварительный тонкий слой диоксида свинца толщиной не более 0,05-0,1 мм, далее электрод с осажденным тонким слоем диоксида свинца плотно обматывают медной проволокой в химически стойкой изоляции в один или в два слоя с шагом намотки, равным диаметру проволоки, после чего процесс электроосаждения диоксида свинца продолжают до полного заращивания проволоки, далее осаждают электрохимическим методом рабочий слой диоксида свинца толщиной 2-3 мм, электрический контакт с рабочим слоем из диоксида свинца осуществляют с внешней стороны электрода через никелевую фольгу, место контакта изолируют химически стойким силиконовым герметиком, поверхность которого после перехода в упругое состояние обжимают слоем медной проволоки в химически стойкой изоляции, поверх которого наносят слой химически стойкого силиконового герметика. Технический эффект - повышение химической стойкости электрода.

Формула изобретения RU 2 318 080 C1

Способ изготовления нерастворимого электрода из титана с рабочим слоем из диоксида свинца, отличающийся тем, что на поверхность основы электрода из титана, ниобия или тантала электрохимическим способом осаждают предварительный тонкий слой диоксида свинца толщиной не более 0,05-0,1 мм, далее электрод с осажденным тонким слоем диоксида свинца плотно обматывают медной проволокой в химически стойкой изоляции в один или в два слоя с шагом намотки, равным диаметру проволоки, после чего процесс электроосаждения диоксида свинца продолжают до полного заращивания проволоки, далее осаждают электрохимическим методом рабочий слой диоксида свинца толщиной 2-3 мм, электрический контакт с рабочим слоем из диоксида свинца осуществляют с внешней стороны электрода через никелевую фольгу, место контакта изолируют химически стойким силиконовым герметиком, поверхность которого после перехода в упругое состояние обжимают слоем медной проволоки в химически стойкой изоляции, поверх которого наносят слой химически стойкого силиконового герметика.

Документы, цитированные в отчете о поиске Патент 2008 года RU2318080C1

Прикладная электрохимия, под
ред
ТОМИЛОВА А.П., Химия, 1984, с.13
Способ изготовления малоизнашиваемого анода 1984
  • Шелудякова Евгения Ивановна
  • Ковешникова Елена Гавриловна
  • Матвеева Людмила Павловна
  • Кушнерев Виктор Иванович
  • Гурьянов Александр Сергеевич
  • Суровягин Борис Павлович
  • Антонов Владимир Ильич
SU1328406A1
Способ изготовления нерастворимых анодов из двуокиси свинца 1959
  • Бахчисараицьян Н.Г.
  • Джафаров Э.А.
SU136049A1
СПОСОБ ФОРМОВКИ ЭЛЕКТРОДОВ СВИНЦОВЫХ АККУМУЛЯТОРОВ 1999
  • Виноградов Е.И.
  • Чесноков В.В.
  • Бельчук В.П.
RU2152668C1
СПОСОБ РЕГИОНАРНОЙ АНЕСТЕЗИИ ПРИ ОПЕРАЦИИ АМПУТАЦИИ НИЖНИХ КОНЕЧНОСТЕЙ 2006
  • Кузьмин Вячеслав Валентинович
RU2306957C1

RU 2 318 080 C1

Даты

2008-02-27Публикация

2006-05-12Подача