Изобретение относится к забойным механизмам и может быть использовано при бурении нефтяных и газовых скважин в качестве двигателей, а в нефтедобыче в качестве насосов.
Известен забойный винтовой двигатель, содержащий статор и расположенный внутри него ротор, имеющие специально спрофилированные винтовые рабочие поверхности, шарнирное соединение и шпиндель /1/.
Характерной особенностью гидромашин этого класса является высокий уровень вибрации, возникающей в процессе эксплуатации. Вибрация, источник которой заложен в самой природе рабочего процесса, распространяется на статор и связанные с ним корпусные детали, включая подшипники.
Ближайшим техническим решением, принятым за прототип, является забойная героторная винтовая машина, состоящая из рабочих органов, выполненных в виде статора с непрерывной внутренней винтовой поверхностью с четным количеством зубьев и расположенного внутри него винтового ротора с количеством зубьев на единицу меньше, чем у статора, и выходного вала, находящегося в корпусе с подшипниками /2/.
Недостатком этой гидромашины является высокий уровень вибрации, поскольку моменты инерционных сил, действующую на машину, не уравновешены.
Задачей изобретения является повышение срока службы забойной героторной винтовой гидромашины за счет уравновешивания инерционных сил и моментов.
Поставленная задача решается за счет того, что в забойной героторной винтовой машине, состоящей из рабочих органов, выполненных в виде монолитного статора с непрерывной внутренней винтовой поверхностью с четным количеством зубьев и расположенного внутри него винтового монолитного ротора с количеством зубьев на единицу меньше, чем у статора, шарнира, шпинделя, в котором расположен выходной вал и радиальные и осевой подшипники, монолитный ротор состоит из трех последовательно расположенных элементов с идентичной винтовой поверхностью, причем крайние элементы ротора имеют одинаковую длину, а центральный элемент ротора имеет длину, равную сумме длин двух крайних элементов, при этом оси смежных элементов ротора (центрального и крайнего) и вершины зубьев ротора в смежных торцевых сечениях расположены в противофазе, кроме того крайние элементы ротора могут быть разнесены от его центрального элемента на расстояния, кратные ходу винтовых поверхностей рабочих органов.
Благодаря указанному расположению элементов рабочих органов обеспечивается уравновешивание всех силовых фактов: радиальных, гидравлических, инерционных сил, а также перекашивающих моментов.
Заявляемое устройство поясняется чертежами.
На фиг.1 забойная героторная винтовая гидромашина изображена в продольном разрезе, на фиг.2 - второй вариант исполнения ротора, на фиг.3 - поперечные сечения трех частей рабочих органов, на фиг.4 - схема уравновешивания инерционных сил.
Заявляемое устройство состоит из секции рабочих органов, включающей статор 1 и ротор 2, шарнира 3, шпинделя, в котором расположены вал 4, радиальные подшипники 5 и осевой 6.
Ротор гидромашины может выполняться с непрерывной винтовой поверхностью или по технологическим соображениям изготовления состоять из разнесенных по длине частей на расстояния l0, кратные ходу винтовых поверхностей рабочих органов, l0=k t0 (фиг.2). В данном случае t0 - ход винтовых поверхностей, k - любое целое число.
В обоих конструктивных вариантах крайние элементы ротора имеют одинаковую длину, а центральный элемент равен сумме длин крайних элементов.
Заявляемая забойная героторная винтовая гидромашина работает следующим образом.
Промывочная жидкость из полости бурильных труб (не показаны) поступает в рабочие камеры героторного механизма, приведя во вращение ротор 2, а вместе с ним шарнир 3. Пройдя внутренние полости всех имеющихся частей героторного механизма, поток жидкости направляется к породоразрушающему инструменту и далее на забой скважины.
Поток промывочной жидкости, поступающей в рабочие органы, создает вращающий момент на роторе и реактивный на статоре. Результатом действия давления жидкости на ротор является перекашивающий момент, осевая гидравлическая сила и т.д. Гидравлические силы, являясь внутренними силами относительно статора, вызывают перекос и прижатие ротора к статору. Их действие не распространяется на корпус статора или двигателя.
Силами, вызывающими вибрацию корпуса, в основном являются массовые - инерционные силы Fj, прижимающие ротор к обкладке статора в зоне полюса зацепления. Их возникновение связано с кинематикой и принципом действия героторных механизмов.
Как видно из фиг.4, предлагаемая конструктивная компоновка обеспечивает уравновешивание инерционных сил и их моментов.
Приведенная схема уравновешивания может быть использована также во всех цилиндрических героторных механизмах, используемых в насосах, компрессорах и редукторах.
Преимуществами заявляемого устройства по сравнению с аналогичными являются уменьшение уровня вибрации гидромашины и, как следствие, увеличение ее долговечности.
Источники информации
1. Гусман М.Т. и др. Забойные винтовые двигатели для бурения скважин. М.: Недра, 1981, с.18, рис.5.
2. Балденко Д.Ф., Балденко Ф.Д., Гноевых А.Н. Винтовые забойные двигатели. М.: Недра, 1999 г., с.35, рис. 2.2. /прототип/.
название | год | авторы | номер документа |
---|---|---|---|
ВИНТОВОЙ ЗАБОЙНЫЙ ДВИГАТЕЛЬ | 2012 |
|
RU2524238C2 |
КАРДАННЫЙ ВАЛ ДЛЯ СОЕДИНЕНИЯ РОТОРА ВИНТОВОЙ ГЕРОТОРНОЙ ГИДРОМАШИНЫ СО ШПИНДЕЛЕМ | 2005 |
|
RU2285781C1 |
Героторная машина | 1983 |
|
SU1384702A1 |
СКВАЖИННЫЙ ГИДРОПРИВОДНОЙ ВИНТОВОЙ НАСОСНЫЙ АГРЕГАТ | 2003 |
|
RU2241855C1 |
СПОСОБ ОДНОВРЕМЕННО-РАЗДЕЛЬНОЙ ЭКСПЛУАТАЦИИ И ЗАКАЧКИ ДВУХ ПЛАСТОВ ОДНОЙ СКВАЖИНОЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2477367C1 |
ГЕРОТОРНЫЙ МЕХАНИЗМ | 2002 |
|
RU2250340C2 |
ВИНТОВАЯ ГИДРОМАШИНА С УРАВНОВЕШЕННЫМ РОТОРОМ | 2017 |
|
RU2642003C1 |
СПОСОБ ОПТИМИЗАЦИИ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ПРОФИЛЯ РАБОЧИХ ОРГАНОВ ОДНОВИНТОВОЙ ГИДРОМАШИНЫ | 1998 |
|
RU2150566C1 |
ВИНТОВОЙ ГЕРОТОРНЫЙ ГИДРАВЛИЧЕСКИЙ НАСОС | 2008 |
|
RU2387877C1 |
Рабочие органы многозаходной одновинтовой гидромашины | 1991 |
|
SU1778367A1 |
Изобретение относится к забойным механизмам и может быть использовано при бурении нефтяных и газовых скважин в качестве двигателей, а в нефтедобыче в качестве насосов. Технической задачей является повышение срока службы забойной героторной винтовой гидромашины за счет уравновешивания инерционных сил и моментов. Забойная героторная винтовая гидромашина состоит из рабочих органов, выполненных в виде монолитного статора с непрерывной внутренней винтовой поверхностью с четным количеством зубьев и расположенного внутри него винтового монолитного ротора с количеством зубьев на единицу меньше, чем у статора, шарнира, шпинделя, в котором расположен выходной вал, радиальных и осевого подшипников. Монолитный ротор состоит из трех последовательно расположенных элементов с идентичной винтовой поверхностью, причем крайние элементы ротора имеют одинаковую длину, а центральный элемент ротора имеет длину, равную сумме длин двух крайних элементов, при этом оси смежных элементов ротора, центрального и крайнего, и вершины зубьев ротора в смежных торцевых сечениях расположены в противофазе, кроме того, крайние элементы ротора разнесены от его центрального элемента на расстояния, кратные ходу винтовых поверхностей рабочих органов. 1 з.п. ф-лы, 4 ил.
БАЛДЕНКО Д.Ф | |||
и др | |||
Винтовые забойные двигатели | |||
- М | |||
: Недра, 1999, с.35, рис.2.2 | |||
Забойный двигатель | 1976 |
|
SU943387A1 |
Героторная машина | 1983 |
|
SU1384702A1 |
Патрон бурового станка | 1991 |
|
SU1794174A3 |
DE 2840809 A1, 03.04.1980 | |||
ГУСМАН М.Т | |||
и др | |||
Забойные винтовые двигатели для бурения скважин | |||
- М | |||
: Недра, 1981, с.18, рис.5. |
Авторы
Даты
2008-02-27—Публикация
2005-11-15—Подача