СПОСОБ ГАЛЬВАНОМЕХАНИЧЕСКОГО ВОССТАНОВЛЕНИЯ ВНУТРЕННИХ ПОВЕРХНОСТЕЙ ТОКОПРОВОДЯЩИХ ДЕТАЛЕЙ Российский патент 2008 года по МПК C25D7/04 

Описание патента на изобретение RU2320784C2

Изобретение относится, преимущественно, к области металлургии и может быть использовано для восстановления точных деталей типа кристаллизаторов, используемых в этой промышленности.

В металлургии при разливе металла используются кристаллизаторы длиной до 2-3 метров с толщиной стенки порядка 15 мм. В сечении они представляет собой квадрат. Отдельные детали к тому же имеют отклонение от прямолинейной оси (изогнуты на отдельных участках по длине). К внутренней поверхности таких деталей предъявляются жесткие требования как по чистоте поверхности, так и по размерам и допускам по ее длине.

При прохождении расплавленного металла внутренняя поверхность кристаллизатора за счет различных факторов теряет свои физико-механические свойства и размеры. Восстановление первоначального состояния поверхности и ее размеров тепловым воздействиям (детонационное и плазменное напыление) ввиду тонкостенности таких деталей исключается из-за возможного коробления. Для такого рода деталей технически и экономически целесообразным способом восстановления поверхности является электролитическое восстановление.

Решения в этой области известны. Так «Способ электролитического нанесения покрытия на внутреннюю поверхность полого изделия» (описание к патенту RU №2156837, кл. C25D 5/22) предусматривает размещение анода в полости изделия, а в процессе осаждения металла из раствора его пластическое деформирование прижимами, перемещаемыми вдоль и поперек поверхности осаждения, подачу в полость изделия концентрированного и вывод обедненного раствора.

Изделию сообщают возвратно-поступательное перемещение, прижимы вращают соосно с анодом.

Наиболее близким решением к заявленному является приведенный в описании к а.с. SU №986970, кл. C25D 5/08, «Способ нанесения гальванических покрытий на длинномерные изделия». Способ включает подвод напряжения к изделию и аноду и прокачивание электролита вдоль межэлектродного зазора. Для повышения равномерности покрытия путем регулирования распределения плотности тока по длине изделия источник питания подключают к электродам со стороны выхода электролита из межэлектродного зазора, измеряют падение напряжения на произвольно выбранном участке длины изделия и, меняя расход электролита, поддерживают измеренную величину, равную расчетной величине падения напряжения на этом участке, которую определяют из соответствующего условия.

Такого вида процесс позволяет проводить обработку на цилиндрических деталях типа цилиндров, штоков. Задачей изобретения является расширение сортамента обрабатываемых деталей, преимущественно, некруглого сечения.

Задача решена за счет того, что в отличии от известного способа, включающего прокачку электролита вдоль оси детали и подачу напряжения на анод, в предлагаемом - анод выполняют секционным в продольном направлении с внешним размером и длиной каждой секции соответствующими конфигурации и величине износа внутренней поверхности детали и на каждую секцию подают в зависимости от указанных параметров соответствующее напряжение, а пространство между обрабатываемой поверхностью и анодом заполняют диэлектрическими телами, которым в процессе восстановления сообщают осциллирующее движение за счет совместного углового перемещения детали с анодом. Выполнение анода секционным в продольном направлении с внешними размерами и длиной каждой секции соответствующими конфигурации и величине износа внутренней поверхности детали с подачей в зависимости от указанных параметров соответствующего напряжения обеспечивает требуемое осаждение металла из раствора в единицу времени на поверхности разных размеров.

Заполнение пространства между анодом и обрабатываемой поверхностью диэлектрическими телами, в частности стеклянными шариками, с сообщением им осциллирующего движения позволяет в процессе нанесения покрытия удалять с поверхностного слоя окисные пленки солей, водород и за счет этого образовывать новые центры кристаллизации и увеличивать дальнейший рост покрытия. В конечном итоге это позволит повысить его качество. Угловое перемещение детали с анодом, учитывая сечение ее (квадрат), обеспечивает равномерно удаление, в том числе из сопряженных поверхностей окисных пленок, солей. В совокупности эти признаки позволяют получить при восстановлении требуемые размеры и качество. Техническим результатом при реализации изобретения является повышение ресурса детали за счет обеспечения требуемого качества поверхности.

Сопоставительный анализ предлагаемого изобретения и прототипа показывает, что предлагаемое решение отличается режимами выполнения его основных действий, а именно:

- выполнение анода секционным в продольном направлении;

- подача на каждую секцию анода соответствующего напряжения;

- заполнение пространства между анодом и обрабатываемой поверхностью диэлектрическими телами;

- придание телам осциллирующего движения;

- сообщение совместного углового перемещения детали и анода.

При анализе способов восстановления того же назначения, известных и обнаруженных в результате патентного поиска, не были выявлены способы, которые характеризуются признаками, сходными с существенными признаками заявляемого технического решения. Это позволяет сделать вывод о том, что оно отвечает критериям изобретения «новизна» и «изобретательский уровень».

На чертежах представлено предлагаемое решение, где:

на фиг.1 - схема реализации способа,

на фиг.2 - сечение А-А фиг.1

Процесс нанесения покрытия на внутреннюю поверхность детали осуществляют следующим образом: определяют последовательность операций, которые обеспечивают осаждение на изношенную поверхность слоя покрытия необходимой толщины. Производят первичную механическую обработку поверхности, подлежащей восстановлению, химическое обезжиривание и промывку проточной водой.

После подготовки во внутреннюю полость детали 1 устанавливают секционный анод 2, секции которого разделены диэлектрическими прокладками 3. Деталь в сборе с анодом устанавливают в приспособление 4. Угловое перемещение ее обеспечивают приводом 5. Устанавливают приспособление на основание 6 и заполняют полость между анодом и внутренней поверхностью детали диэлектрическими телами, в качестве которых используют стеклянные шарики. Штуцерами 7 и 8 обеспечивают подвод и слив электролита.

После подвода соответствующего напряжения на каждую секцию анода включают привод углового перемещения детали и прокачку электролита. Для активизации осциллирующего движения стеклянных шариков используют виброакустический излучатель 9.

По окончании процесса производят разборку, деталь промывают и проводят ее промер.

Пример конкретного осуществления способа

Реализация способа проводилась на детали из стали ВНЛ-3 длиной 1600 мм, в сечении представляющей квадрат с исходными размерами 210×210 мм. Износ поверхности по длине детали по зонам был различным и составлял усредненные значения: I зона - 0,020 мм; II зона - 0,033 мм; III зона - 0,047 мм; IV зона - 0,058 мм.

Анод был изготовлен из четырех секций разной длины каждая с размерами в поперечном сечении соответствующими размерам поверхности детали с подачей напряжения на каждую секцию, выбранным по номограмме. Источник тока ТВ1-3150/48Т-0УХЛ4 с рабочим током 3150 А. В качестве электролита использовался водный раствор хлористого двухвалентного железа, который прокачивали со скоростью 6 литров в минуту.

Промежуток между поверхностями восстанавливаемой детали и анодом составлял 45 мм. Указанная полость была на 75% заполнена стеклянными шариками диаметром 5 мм. Детали совместно с анодом сообщали угловое перемещение со скоростью 0,1 рад/мин при повороте до ±180°. Для активизации осциллирующего движения шариков периодически включали виброакустический излучатель. Процесс обработки осуществлялся в течение 6 часов. После обработки был произведен замер размеров поверхности, который показал отклонение от номинала на ±0,010 мм, что удовлетворяло предъявляемым требованиям.

Похожие патенты RU2320784C2

название год авторы номер документа
СПОСОБ ГАЛЬВАНОМЕХАНИЧЕСКОГО ВОССТАНОВЛЕНИЯ ТОКОПРОВОДЯЩИХ ДЕТАЛЕЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Копылов Юрий Романович
  • Копылов Дмитрий Юрьевич
RU2296821C1
УСТРОЙСТВО ДЛЯ ГАЛЬВАНОМЕХАНИЧЕСКОГО ВОССТАНОВЛЕНИЯ ТОКОПРОВОДЯЩИХ ДЕТАЛЕЙ 2005
  • Копылов Юрий Романович
  • Копылов Андрей Юрьевич
RU2296822C1
УСТРОЙСТВО ДЛЯ ГАЛЬВАНОМЕХАНИЧЕСКОГО ВОССТАНОВЛЕНИЯ ТОКОПРОВОДЯЩИХ ДЕТАЛЕЙ 2005
  • Копылов Юрий Романович
  • Копылов Андрей Юрьевич
RU2296823C1
СПОСОБ ГАЛЬВАНОМЕХАНИЧЕСКОГО ВОССТАНОВЛЕНИЯ ТОКОПРОВОДЯЩИХ ДЕТАЛЕЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2006
  • Копылов Юрий Романович
RU2323277C2
СПОСОБ ГАЛЬВАНО-МЕХАНИЧЕСКОГО ВОССТАНОВЛЕНИЯ ТОКОПРОВОДЯЩИХ ДЕТАЛЕЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Копылов Юрий Романович
  • Толчеев Алексей Владимирович
RU2333298C2
СПОСОБ ВИБРОУДАРНОЙ ОБРАБОТКИ ДЕТАЛИ 2006
  • Копылов Юрий Романович
  • Копылов Андрей Юрьевич
RU2341364C2
УСТАНОВКА ДЛЯ ВИБРОУДАРНОЙ ОБРАБОТКИ ДЕТАЛЕЙ 2007
  • Копылов Юрий Романович
  • Копылов Дмитрий Юрьевич
  • Копылов Андрей Юрьевич
RU2419532C2
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРЕКТИРОВКИ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ДЕТАЛЕЙ ТИПА "КОЛЬЦО" 1998
  • Галанин С.И.
  • Рудовский П.Н.
  • Соркин А.П.
  • Жуков О.К.
  • Калинников В.А.
RU2136460C1
СПОСОБ УПАКОВЫВАНИЯ ТВЕРДЫХ БЫТОВЫХ ОТХОДОВ 1997
  • Копылов Юрий Всеволодович
  • Копылов Дмитрий Юрьевич
RU2120827C1
СПОСОБ ПЕРФОРАЦИИ УЧАСТКА ТРУБЫ В СКВАЖИНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Журавлев Сергей Романович
  • Пономаренко Дмитрий Владимирович
  • Поликарпов Александр Джонович
  • Поляков Сергей Владимирович
  • Емельянов Алексей Викторович
  • Козырев Алексей Георгиевич
  • Канеев Фарит Абуталибович
RU2414588C1

Иллюстрации к изобретению RU 2 320 784 C2

Реферат патента 2008 года СПОСОБ ГАЛЬВАНОМЕХАНИЧЕСКОГО ВОССТАНОВЛЕНИЯ ВНУТРЕННИХ ПОВЕРХНОСТЕЙ ТОКОПРОВОДЯЩИХ ДЕТАЛЕЙ

Изобретение относится к области металлургии и может быть использовано для восстановления внутренней поверхности кристаллизаторов. Способ включает прокачку электролита вдоль оси детали, подачу напряжения на анод, при этом анод выполняют секционным в продольном направлении с внешними размерами и длиной каждой секции соответствующими конфигурации и величине износа внутренней поверхности детали, на каждую секцию анода подают напряжение, а пространство между поверхностями детали и анода заполняют диэлектрическими телами, которым сообщают осциллирующее движение за счет совместных угловых перемещений детали с анодом. Технический результат: расширение сортамента обрабатываемых изделий, преимущественно, некруглого сечения. 2 ил.

Формула изобретения RU 2 320 784 C2

Способ гальваномеханического восстановления внутренних поверхностей токопроводящих деталей, преимущественно, некруглого сечения, включающий установку анода во внутреннюю полость детали, прокачку электролита вдоль оси детали и подачу напряжения на анод, отличающийся тем, что анод выполняют из секций с внешними размерами и длиной каждой секции в продольном направлении соответствующими конфигурации и величине износа внутренней поверхности детали, при этом на каждую секцию в зависимости от указанных параметров подают соответствующее напряжение, а пространство между поверхностями детали и анода заполняют диэлектрическими телами, которым в процессе восстановления сообщают осциллирующее движение за счет совместного углового перемещения детали с анодом.

Документы, цитированные в отчете о поиске Патент 2008 года RU2320784C2

Способ нанесения гальванических покрытий на длинномерные изделия 1981
  • Тужиков Николай Семенович
SU986970A1
Устройство для электролитического нанесения покрытий 1989
  • Варфоломеев Борис Георгиевич
  • Мищенко Анатолий Васильевич
SU1678911A1
Способ нанесения гальванических покрытий на изделие 1984
  • Алексеев Андрей Николаевич
SU1182092A1

RU 2 320 784 C2

Авторы

Копылов Юрий Романович

Копылов Дмитрий Юрьевич

Даты

2008-03-27Публикация

2006-03-28Подача