КОМПЛЕКСНЫЙ СИНТЕТИЧЕСКИЙ ЛЕГКОПЛАВКИЙ ФЛЮС ДЛЯ ЧЕРНОЙ МЕТАЛЛУРГИИ Российский патент 2008 года по МПК C21B3/02 C21C1/02 C21C7/64 

Описание патента на изобретение RU2321641C1

Изобретение относится к черной металлургии и может быть использовано для металлургических процессов выплавки чугуна и стали.

Известен металлургический флюс, представляющий собой смесь извести с плавиковым шпатом. /Кудрин В.А. Теория и технология производства стали. - М.: Изд-во «АСТ». 2003. 528 с./. Использование данного флюса в металлургических процессах способствует ускорению шлакообразования и повышению эффективности рафинирования металла.

Недостатком данного флюса является высокая стоимость вследствие использования дорогостоящего компонента - плавикового шпата.

Известен сталеплавильный флюс, получаемый путем спекания шихты, содержащей известняк или доломит, конвертерный шлам, окалину, известь и топливо в заданном соотношении /Авторское свидетельство СССР №945209, кл. С22В 1/24, 1982 г./. Легкоплавкость флюса обеспечивается за счет образования в процессе спекания ферритов кальция и магния. Использование указанного флюса улучшает шлаковый режим плавки и позволяет снизить расход плавикового шпата.

Недостатком указанного флюса является наличие в его составе кремнезема, что приводит к образованию в процессе спекания тугоплавкого двухкальциевого силиката и повышению температуры его плавления, а также присутствие оксидов железа, приводящее к охлаждающему эффекту в сталеплавильной ванне, и высокие затраты на изготовление вследствие необходимости спекания при высоких температурах (1000-1700°С).

Наиболее близким по технической сущности и достигаемому результату к предлагаемому является материал, полученный из отходов металлургического производства, содержащий фторуглеродсодержащие отходы электролитического производства алюминия (35-62%), пыль электрофильтров газоочистки производства технического кремния (5-30%), портландцемент (4-7%), жидкое натриевое стекло (10-25%), воду (остальное) /Заявка на патент №96102512, С04В 7/14, 1998 г./. Наличие в данном материале соединений фтора, углерода и кальция обеспечивает низкую температуру его плавления, благоприятный тепловой режим разжижения шлаков и высокую рафинирующую способность шлаковых расплавов в условиях металлургических агрегатов. Материал характеризуется более низкими затратами на получение вследствие отсутствия стадии спекания.

Недостатком данного материала является его ограниченная способность по обеспечению высокой рафинирующей способности металлургических шлаков вследствие высокой концентрации балластных для металлургических процессов компонентов (кремнезем в составе пыли электрофильтров, портландцемент, силикат натрия в составе жидкого стекла), ограничивающих снижение температуры плавления флюса и снижающих содержание в его составе высокоактивных компонентов (фторуглеродистые соединения).

Задачей изобретения является повышение рафинирующей способности металлургических шлаков за счет увеличения в составе флюса содержания легкоплавких и высокоактивных компонентов и оптимизации их соотношения.

Задача решается следующим образом.

Комплексный синтетический легкоплавкий флюс для черной металлургии, состоящий из соединений фтора, углерода и кальция, содержит 30-60% углерода, 5-30% оксида кальция, 25-65% фторидов натрия, алюминия, кальция и магния, 0,5-5% - примесей (оксиды алюминия, железа, кремния и др.) при следующем соотношении элементов в составе полезных компонентов (без примесей): натрий:алюминий:кальций:магний - (5-15):(1-4):(5-20):(0,1-1,0).

Заданное соотношение компонентов обуславливает оптимальный тепловой баланс, самообеспечение теплом процессов расплавления содержащихся во флюсе фтористых соединений натрия, алюминия, кальция и магния, максимальную жидкотекучесть и рафинирующую способность металлургических шлаков. Окисление содержащего в составе флюса углерода при взаимодействии с присутствующими в металлургических агрегатах газообразными окислителями (кислород, диоксид углерода) или оксидами металлургической шихты обеспечивает необходимее тепловыделение и оптимальный интервал температур для перехода содержащихся в составе флюса фторидов натрия, алюминия, кальция и магния в жидкотекучее состояние. Заданное соотношение элементов в составе полезных компонентов флюса (без примесей) обеспечивает максимальную активность физических и химических процессов взаимодействия флюсов со шлаком и жидким металлом и наибольшую рафинирующую способность шлаков.

Исследования показали, что только флюс, содержание компонентов в котором укладывается в заданные пределы, имеет удовлетворительные физико-химические характеристики.

При содержании углерода ниже 30% количество выделяющегося при его окислении тепла недостаточно для обеспечения хорошей жидкотекучести и ассимилирующей способности металлургических шлаков и соответственно высокой степени рафинирования жидкого металла. При содержании углерода свыше 60% возрастают потери тепла с газообразными продуктами его окисления и снижается активность флюса вследствие уменьшения содержания в нем легкоплавких фтористых соединений.

При содержании оксида кальция менее 5% не обеспечивается достаточная степень рафинирования металла от серы. При содержании оксида кальция более 30% увеличивается температура плавления флюса и не обеспечивается достаточная жидкотекучесть и рафинирующая способность металлургических шлаков.

При содержании фторидов натрия, алюминия, кальция и магния менее 25% флюс не обеспечивает достаточную жидкотекучесть и рафинирующую способность металлургических шлаков. При содержании фторидов натрия, алюминия, кальция и магния свыше 65% активность флюса снижается вследствие снижения содержания углерода и недостаточности теплообеспечения процесса расплавления фтористых соединений.

Содержание примесей (оксиды алюминия, железа, кремния и др.) менее 0,5% приводит к удорожанию флюса вследствие необходимости использования дорогостоящих химически чистых полезных компонентов (углерод, оксид кальция, фториды натрия, алюминия, кальция, магния). При содержании примесей свыше 5% снижается активность флюса и ухудшается ассимилирующая и рафинирующая способность металлургических шлаков.

Выход соотношения элементов в составе полезных компонентов флюса (без примесей) натрий:алюминий:кальций:магний за указанные пределы приводит к увеличению температуры плавления флюса и ухудшению его ассимилирующей и рафинирующей способности.

Пример 1: Опытная шихта для получения комплексного синтетического легкоплавкого флюса состояла из дробленой отработанной футеровки электролизеров ОАО «Новокузнецкий алюминиевый завод» и извести цеха обжига известняка ОАО «Западно-Сибирский металлургический комбинат». Состав готового флюса: фторид натрия NaF - 19,0%; фторид алюминия AlF3 - 9,1%; CaF2 - 2,5%; MgF2 - 1,5%; CaO - 10%, С - 55%, примеси - 2,9%, в том числе Fe2O3 - 1,1%; Al2O3 - 1,6%; SiO2 - 0,1%, S - 0,1%. Соотношение элементов в составе полезных компонентов (без примесей): натрий:алюминий:кальций:магний - 10,5:2,9:8,4:0,6. Температура плавления флюса составила 950°С.

Комплексный синтетический легкоплавкий флюс вводили в шихту доменной печи №5 ОАО «Новокузнецкий металлургический комбинат» для проплавки тугоплавких титаносодержащих окатышей, содержание которых в металлизованной доменной шихте составило 20%. Расход флюса составил 5 кг/т жидкого чугуна. Состав полученного чугуна, %: Si - 0,67; Ti - 0,21; Mn - 0,56; V - 0,12; S - 0,014. Состав полученного шлака, %: SiO2 - 34,98; Al2O3 -16,93; CaO - 26,83; MgO - 15,27; FeO - 0,28; S - 0,48. Основность шлака составила 1,29. Достигнуто значительное улучшение жидкотекучести и обессеривающей способности доменных шлаков, в результате чего содержание серы в чугуне снизилось с 0,034% (базовый период) до 0,014% (опытный период). Применение флюса обеспечило также хорошую дренажную способность горна.

Пример 2: Опытная шихта для получения комплексного синтетического легкоплавкого флюса состояла из шламов газоочистки электролизеров, заскладированных в шламонакопителе ОАО «Красноярский алюминиевый завод», аспирационной пыли установки рассева комовой металлургической извести цеха обжига извести ОАО «Западно-Сибирский металлургический комбинат», дробленых огарков обожженных анодов ОАО «Красноярский алюминиевый завод». Состав готового флюса: фторид натрия NaF - 11,0%; фторид алюминия AlF3 - 6,0%; CaF2 - 18,0%; MgF2 - 0,8%; CaO - 15%, С - 47,5%, примеси - 1,7%, в том числе Fe2О3 - 0,8%; Al2О3 - 0,6%; SiO2 - 0,2%, S - 0,1%. Соотношение элементов в составе полезных компонентов (без примесей): натрий:алюминий:кальций:магний - 6,0:1,9:19,8:0,3. Температура плавления флюса составила 1040°С.

Комплексный синтетический легкоплавкий флюс был опробован в 350-тонном конвертере №4 кислородно-конвертерного цеха №2 ОАО «Западно-Сибирский металлургический комбинат» с верхним кислородным дутьем. На дно конвертера загружали металлолом, известь и часть комплексного синтетического флюса указанного состава. Затем заливали жидкий чугун. Температура заливаемого чугуна 1399°С, химический состав, %: Si - 0,63; Mn - 0,43; S - 0,022; P - 0,24. Далее опускали кислородную фурму и вели кислородную продувку, присаживая по ходу продувки известь и синтетический флюс. Общий расход флюса составил 5,9 кг/т стали. Продолжительность продувки - 18 мин. Температура металла на повалке 1636°С. Химический состав металла на повалке, %: С - 0,14; Mn - 0,16; S - 0,017; Р - 0,019. Температура металла перед сливом - 1632°С. Химический состав металла перед сливом, %: С - 0,09; Mn - 0,12; S - 0,015; Р - 0,014. Химический состав шлака, %: СаО - 51,4; SiO2 - 14,3; FeO - 21,2. Основность шлака - 3,6. Присадка флюса обеспечила формирование жидкотекучего шлакового расплава и получение высокоактивного шлака, обладающего высокой рафинирующей способностью. Степень десульфурации металла составила 22,7%. Подтверждением высокой активности и рафинирующей способности шлака является повышение степени десульфурации с 10,0% (сравнительные плавки) до 22,7% (опытные плавки).

Таким образом, применение предлагаемых комплексных синтетических легкоплавких флюсов в доменных печах и конвертерах позволило повысить рафинирующую способность металлургических шлаков за счет увеличения в составе флюса содержания легкоплавких и высокоактивных компонентов и оптимизации их соотношения.

Похожие патенты RU2321641C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КОМПЛЕКСНЫХ СИНТЕТИЧЕСКИХ ФЛЮСОВ ДЛЯ ЧЕРНОЙ МЕТАЛЛУРГИИ 2007
  • Волынкина Екатерина Петровна
  • Макарчук Владимир Викторович
  • Халаман Наталья Андреевна
RU2354707C2
СПОСОБ ДОМЕННОЙ ПЛАВКИ 2008
  • Юрьев Алексей Борисович
  • Годик Леонид Александрович
  • Поляков Николай Серафимович
  • Козырев Николай Анатольевич
  • Томских Сергей Геннадьевич
  • Поляков Виталий Николаевич
RU2359041C1
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОГО ФЛЮСА ДЛЯ МЕТАЛЛУРГИЧЕСКИХ ПРОЦЕССОВ ВЫПЛАВКИ ЧУГУНА И СТАЛИ 2011
  • Куликов Борис Петрович
  • Волынкина Екатерина Петровна
  • Николаев Михаил Дмитриевич
  • Кузнецов Александр Александрович
  • Макарчук Владимир Викторович
  • Утробин Михаил Витальевич
  • Буймов Дмитрий Владимирович
RU2465342C1
МЕТАЛЛУРГИЧЕСКИЙ ФЛЮС И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2013
  • Аксельрод Лев Моисеевич
  • Назмиев Михаил Ирэкович
  • Половинкина Раиса Сергеевна
  • Симакова Ольга Викторовна
  • Беляева Ирина Спартаковна
RU2547379C1
Флюс для механизированной сварки и наплавки сталей 2020
  • Павлов Вячеслав Владимирович
  • Козырев Николай Анатольевич
  • Крюков Роман Евгеньевич
  • Лазаревский Павел Павлович
  • Михно Алексей Романович
RU2749735C1
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКОГО ЖЕЛЕЗА 2013
  • Гринберг Игорь Самсонович
  • Гринберг Андрей Игоревич
RU2532713C1
ФЛЮС ДЛЯ МЕХАНИЗИРОВАННОЙ СВАРКИ И НАПЛАВКИ СТАЛЕЙ 2014
  • Крюков Николай Егорович
  • Крюков Евгений Николаевич
  • Козырев Николай Анатольевич
  • Крюков Роман Евгеньевич
  • Козырева Ольга Евгеньевна
RU2579412C2
Флюс для механизированной сварки и наплавки сталей 2020
  • Павлов Вячеслав Владимирович
  • Козырев Николай Анатольевич
  • Михно Алексей Романович
  • Лазаревский Павел Павлович
RU2753346C1
СПЛАВ ДЛЯ ОБРАБОТКИ РАСПЛАВОВ ЖЕЛЕЗА В ПРОЦЕССАХ ЧЕРНОЙ МЕТАЛЛУРГИИ 2022
  • Неретин Сергей Николаевич
  • Иванушкин Федор Алексеевич
  • Казакова Екатерина Александровна
RU2786778C1
СПОСОБ РАФИНИРОВАНИЯ И МОДИФИЦИРОВАНИЯ ЖЕЛЕЗОУГЛЕРОДИСТОГО РАСПЛАВА 2001
  • Рябчиков И.В.
  • Рощин В.Е.
  • Грибанов В.П.
  • Усманов Р.Г.
  • Дынин А.Я.
  • Мальков Н.В.
RU2192479C1

Реферат патента 2008 года КОМПЛЕКСНЫЙ СИНТЕТИЧЕСКИЙ ЛЕГКОПЛАВКИЙ ФЛЮС ДЛЯ ЧЕРНОЙ МЕТАЛЛУРГИИ

Изобретение относится к черной металлургии и может быть использовано для металлургических процессов выплавки чугуна и стали. Флюс содержит 30-60% углерода, 5-30% оксида кальция, 25-65% фторидов натрия, алюминия, кальция и магния, 0,5-5% - примесей, в т.ч. оксиды алюминия, железа, кремния. Соотношение элементов в составе полезных компонентов, без примесей, следующее: натрий:алюминий:кальций:магний - (5-15):(1-4):(5-20):(0,1-1,0). Изобретение позволит повысить рафинирующую способность металлургических шлаков за счет увеличения в составе флюса содержания легкоплавких и высокоактивных компонентов и оптимизации их соотношения.

Формула изобретения RU 2 321 641 C1

Комплексный синтетический легкоплавкий флюс для процессов черной металлургии, состоящий из углерода и соединений фтора и кальция, отличающийся тем, что он содержит 30-60% углерода, 5-30% оксида кальция, 25-65% фторидов натрия, алюминия, кальция и магния, 0,5-5% - примесей, в т.ч. оксиды алюминия, железа, кремния, при следующем соотношении элементов в составе полезных компонентов флюса без примесей: натрий: алюминий: кальций: магний - (5-15):(1-4):(5-20):(0,1-1,0).

Документы, цитированные в отчете о поиске Патент 2008 года RU2321641C1

US 3998624 А, 21.12.1976
SU 1123294 A1, 20.03.1996
СПОСОБ ПОЛУЧЕНИЯ ФЕРРИТНО-КАЛЬЦИЕВОГО КОМПЛЕКСНОГО ФЛЮСА 2001
  • Хайдуков В.П.
  • Бабаев Э.Д.
RU2183224C1
Шихта для получения сталеплавильного флюса 1980
  • Соколов Геннадий Анисимович
  • Поживанов Александр Михайлович
  • Сергеев Александр Георгиевич
  • Хайдуков Владислав Павлович
  • Сотниченко Анатолий Семенович
  • Тонких Эдуард Михайлович
  • Манюгин Александр Патрикеевич
  • Дежемесов Александр Андреевич
SU945209A1
US 3897244 А, 29.07.1975.

RU 2 321 641 C1

Авторы

Волынкина Екатерина Петровна

Макарчук Владимир Викторович

Халаман Наталья Андреевна

Даты

2008-04-10Публикация

2006-06-07Подача