Изобретение относится к нефтегазовому комплексу, в частности к способам определения коррозии цементного камня.
Известен способ определения коррозии цементного камня, включающий взаимосвязанные между собой технологические операции подготовки цементного камня, погружение и выдержку цементного камня в коррелирующем растворе и определение степени коррозии (см. Политехнический словарь, М., С.Э., 1989 г.)
Известен также способ определения коррозии цементного камня, включающий взаимосвязанные между собой технологические операции подготовки цементного камня, погружение и выдержку цементного камня в коррелирующем растворе и определение степени коррозии (см. статью Кравцов В.М. и др. К механизму и кинетике коррозии тампонажного камня в условиях сероводородной агрессии, Известия ВУЗов номер 11, 1980 г.).
Недостатками известных способов являются высокая трудоемкость и длительность определения коррозии за счет того, что образцы цементного камня помещались в раствор сероводорода, через 3, 6, 9, 12 месяцев определялась толщина разрушенного слоя, для чего образцы распиливались или сошлифовывались и подвергались микрофотографированию и получали математическую модель процесса разрушения цементного камня как функцию пористости прокорродировавшего камня, коэффициента молекулярной диффузии и концентрации сероводорода, при этом фактически химическая коррозия и ее скорость не исследуются, следствием такого подхода является невозможность анализа механизма процесса, подбора ингибиторов и распространения результатов за пределы диапазона исследований. Известно, что в среде сильных кислот, таких как азотная, хлористоводородная и др., цементный камень растворяется полностью, без осадка в течение нескольких часов, известно также, что сероводород обладает невысокой растворимостью в воде - 0,334 моль/л·МПа, сероводородная коррозия является относительно более медленным процессом, чем кислотная, т.е. процесс коррозии лимитируется концентрацией сульфид-ионов, поэтому сероводородную коррозию лучше исследовать в отсутствие протонов, т.е. в нейтральной или слабощелочной среде - такой средой является водный раствор сульфида натрия. Для того чтобы исключить тормозящее действие молекулярной диффузии сульфид-ионов и продуктов коррозии в порах цементного камня рекомендуется измельчить камень до такого размера, чтобы тормозящее действие молекулярной диффузии стало несущественным, при этом появляется возможность исследования формальной кинетики химической реакции сульфид-ионов с компонентами цементного камня, а также кинетику вторичных реакций коррозионного процесса - образование нерастворимых продуктов и переход некоторых солей в раствор, в условиях традиционного способа это было невозможно.
Цель изобретения - снижение трудоемкости и времени определения коррозии.
Достигается это тем, что подготовку цементного камня осуществляют с исключением тормозящего действия молекулярной диффузии путем измельчения цементного камня, коррелирующий раствор выбирают из нейтральной или слабощелочной среды в виде водного раствора сульфида натрия, погружение цементного камня в корродирующий раствор производят частицами размером 0,1-1,0 мм, выдержку цементного камня в корродирующем растворе выполняют при непрерывном перемешивании с периодическим отбором проб жидкой и твердой фаз для химического анализа на содержание ионов, а определение степени коррозии осуществляют по изменению концентрации сульфид-ионов, их формальной кинетике с компонентами цементного камня, образования нерастворимых продуктов и перехода солей в корродирующий раствор.
При этом целесообразно и полезно, чтобы
- отбор проб для химического анализа осуществляли с определением ионов серы,
- отбор проб для химического анализа осуществляем с определением ионов кальция,
- отбор проб для химического анализа осуществляли с определением ионов натрия,
- отбор проб для химического анализа осуществляли с определением ионов алюминия,
- отбор проб для химического анализа осуществляли с определением ионов кремния.
Способ соответствует всем условиям патентоспособности изобретения, а именно
- признаку наличия действия или совокупности действий, поскольку подготовку цементного камня осуществляют с исключением тормозящего действия молекулярной диффузии путем измельчения цементного камня, корродирующий раствор выбирают из нейтральной или слабощелочной среды в виде водного раствора сульфида натрия,
- признаку условий осуществления действий, поскольку погружение цементного камня в корродирующий раствор производят частицами размером 0,1-1,0 мм, выдержку цементного камня в корродирующем растворе выполняют при непрерывном перемешивании с периодическим отбором проб жидкой и твердой фаз для химического анализа,
- признаку выполнения действий во времени (последовательно, одновременно, в различных сочетаниях и т.п.), поскольку определение степени коррозии осуществляют по изменению концентрации сульфидионов, их формальной кинетике с компонентами цементного камня, образования нерастворимых продуктов и перехода солей в корродирующий раствор.
Способ определения коррозии цементного камня включает взаимосвязанные между собой технологические операции подготовки 1 цементного камня 2, погружение 3 и выдержку 4 цементного камня в корродирующем растворе 5 и определение степени коррозии 6, при этом подготовку 1 цементного камня 2 осуществляют с исключением тормозящего действия 7 молекулярной диффузии 8 путем измельчения 9 цементного камня, корродирующий раствор 5 выбирают из нейтральной 10 или слабощелочной 11 среды в виде водного раствора сульфида натрия 12, погружение 3 цементного камня 2 в корродирующий раствор 5 производят частицами размером 0,1-1,0 мм, выдержку 4 цементного камня 2 в корродирующем растворе 5 выполняют при непрерывном перемешивании 13 с периодическим отбором проб 14 жидкой 15 и твердой 16 фаз для химического анализа на содержание ионов 17, а определение степени коррозии 6 осуществляют по изменению концентрации сульфид-ионов 18, их формальной кинетике с компонентами цементного камня 2, образования нерастворимых продуктов 19 и перехода солей 20 в корродирующий раствор 5, причем отбор проб для химического анализа осуществляют с определением ионов серы, или осуществляют с определением ионов хлора, или с определением ионов кальция, или с определением ионов натрия, с определением ионов алюминия, или с определением ионов серной кислоты, или с определением ионов кремния.
Выполнение способа при различных начальных концентрациях сульфида натрия осуществляют следующим образом.
Пример 1.
В стеклянный реактор периодического действия объемом 3,5 л с мешалкой и контрольным термометром заливали 3 л дистиллированной воды и загружали соответственно 79,1, 52,3, 19,5, и 13,4 г безводного сульфида натрия, после полного растворения сульфида натрия и достижения температуры 60°С загружали 100 г измельченного цементного камня фракции 0,5-1,0 мм, в течение 144 ч реакционную массу непрерывно перемешивали и периодически проводили отбор проб для анализа.
Пример 2.
В стеклянный реактор периодического действия объемом 3,5 л с мешалкой и контрольным термометром заливали 3 л дистиллированной воды и загружали 79,1 г безводного сульфида натрия, после полного растворения сульфида натрия и достижения температуры 60°С загружали 100 г измельченного цементного камня фракции 0,5-1,0 мм, в течение 144 ч реакционную массу непрерывно перемешивали и периодически проводили отбор проб для анализа.
Результаты химических анализов жидкой фазы на содержание сульфид-ионов, ионов натрия, кальция, алюминия, кремния, хлора и сульфат-ионов подтверждают протекание химической реакции.
Пример 3.
В стеклянный реактор периодического действия объемом 3,5 л с мешалкой и контрольным термометром заливали 3 л дистиллированной воды и загружали 52,3 г безводного сульфида натрия, после полного растворения сульфида натрия и достижения температуры 60°С загружали 100 г измельченного цементного камня фракции 0,5-1,0 мм, в течение 144 ч реакционную массу непрерывно перемешивали и периодически проводили отбор проб для анализа.
Результаты химических анализов жидкой фазы на содержание сульфид-ионов, ионов натрия, кальция, алюминия, кремния, хлора и сульфат-ионов подтверждают протекание химической реакции.
Пример 4.
В стеклянный реактор периодического действия объемом 3,5 л с мешалкой и контрольным термометром заливали 3 л дистиллированной воды и загружали 19,5 г безводного сульфида натрия, после полного растворения сульфида натрия и достижения температуры 60°С загружали 100 г измельченного цементного камня фракции 0,5-1,0 мм, в течение 144 ч реакционную массу непрерывно перемешивали и периодически проводили отбор проб для анализа.
Результаты химических анализов жидкой фазы на содержание сульфид-ионов, ионов натрия, кальция, алюминия, кремния, хлора и сульфат-ионов подтверждают протекание химической реакции.
Пример 5.
В стеклянный реактор периодического действия объемом 3,5 л с мешалкой и контрольным термометром заливали 3 л дистиллированной воды и загружали 13,4 г безводного сульфида натрия, после полного растворения сульфида натрия и достижения температуры 60°С загружали 100 г измельченного цементного камня фракции 0,5-1,0 мм, в течение 144 ч реакционную массу непрерывно перемешивали и периодически проводили отбор проб для анализа.
Результаты химических анализов жидкой фазы на содержание сульфид-ионов, ионов натрия, кальция, алюминия, кремния, хлора и сульфат-ионов подтверждают протекание химической реакции.
название | год | авторы | номер документа |
---|---|---|---|
ТАМПОНАЖНЫЙ СОСТАВ | 2005 |
|
RU2305695C2 |
СПОСОБ РЕГУЛИРОВАНИЯ РАЗРАБОТКИ НЕОДНОРОДНОГО НЕФТЯНОГО ПЛАСТА | 2005 |
|
RU2304706C2 |
КИСЛОТНЫЙ ПОВЕРХНОСТНО-АКТИВНЫЙ СОСТАВ ДЛЯ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ | 2005 |
|
RU2307149C2 |
СПОСОБ ПРЕДОТВРАЩЕНИЯ СОЛЕОТЛОЖЕНИЯ В НЕФТЕГАЗОПРОМЫСЛОВОМ ОБОРУДОВАНИИ | 2005 |
|
RU2320852C2 |
ТЕХНОЛОГИЧЕСКАЯ ЖИДКОСТЬ ДЛЯ ПЕРФОРАЦИИ И ГЛУШЕНИЯ СКВАЖИН | 2005 |
|
RU2309176C2 |
Раствор для коррозионных испытаний медных сплавов на склонность к избирательной коррозии | 1987 |
|
SU1538101A1 |
СПОСОБ ТЕХНИЧЕСКОГО КОНТРОЛЯ СОСТОЯНИЯ КРЕПИ СКВАЖИНЫ В ПРОЦЕССЕ ЕЕ ЭКСПЛУАТАЦИИ | 2002 |
|
RU2249095C2 |
СПОСОБ КОНСЕРВАЦИИ КОТЕЛЬНОГО ОБОРУДОВАНИЯ | 2021 |
|
RU2763083C1 |
Способ определения состава отложений, образующихся в оборудовании для подготовки нефти | 2020 |
|
RU2743783C1 |
Способ выщелачивания и извлечения золота и серебра из пиритных огарков | 2019 |
|
RU2721731C1 |
Способ включает подготовку цементного камня путем его измельчения. Погружение цементного камня в коррозионный раствор производят частицами размером 0,1-1,0 мм. Коррозионный раствор выбирают из нейтральной или слабощелочной среды в виде водного раствора сульфида натрия. Выдержку цементного камня в коррозионном растворе выполняют при непрерывном перемешивании с периодическим отбором проб жидкой фазы для химического анализа на содержание ионов. Определение степени коррозии осуществляют по изменению концентрации сульфид-ионов. Способ характеризуется уменьшением времени определения коррозии. 5 з.п. ф-лы.
Способ определения скорости коррозии тампонажного камня | 1986 |
|
SU1320717A1 |
Способ оценки качества цементного камняВ СКВАжиНЕ | 1979 |
|
SU853543A1 |
Способ коррозионных испытаний | 1978 |
|
SU813201A1 |
Способ определения коррозионной стойкости крупнопористого бетона | 1990 |
|
SU1781592A1 |
Авторы
Даты
2008-06-20—Публикация
2006-05-04—Подача