Изобретение относится к области систем обработки информации и может быть использовано при функциональном контроле и диагностировании линейного токоограничивающего реактора/резистора на основе его модели.
Известен способ определения параметров линейного токоограничивающего реактора/резистора с помощью метода амперметра - вольтметра [Справочник по наладке электрооборудования электростанций и подстанций / Н.А.Воскресенский, А.Е.Гомберг, Л.Ф.Колесников и др.; Под ред. Э.С.Мусаэляна. - 2-е изд., перераб. и доп. - М.: Энергоатомиздат, 1984. - 344 с.: ил.] заключающийся в том, что проводят измерения при нескольких действующих значениях тока и напряжения (не менее 3-5) и определяют среднее значение параметров по формуле:
- линейного токоограничивающего реактора
- резистора
где ΔU1, ΔU2, ..., ΔUn - потери напряжения на линейном токоограничивающем реакторе, соответствующие проводимым измерениям;
U1, U2, ..., Un - напряжения на резисторе, соответствующие проводимым измерениям;
I1, I2, ..., In - токи линейного токоограничивающего реактора/резистора, соответствующие проводимым измерениям;
n - количество произведенных измерений.
Недостатком известного способа является сложность его реализации, невозможность определения значения активного сопротивления линейного токоограничивающего реактора и реактивного сопротивления резистора.
Известен способ определения параметров линейного токоограничивающего реактора/резистора [Основы теории цепей: Учебник для вузов / Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. - 5-е изд., перераб. - М.: Энергоатомиздат, 1989. - 528 с.: ил.], выбранный в качестве прототипа, заключающийся в том, что проводят измерения амплитудных или действующих значений тока и напряжения, фазовый сдвиг между током и напряжением (аргумент комплексного сопротивления ϕ, равный разности фаз напряжения и тока) и определяют полное сопротивление по формуле:
где U, I - действующие значения напряжения и тока;
Um, Im - амплитудные значения напряжения и тока.
Активное и реактивное сопротивления определяют по формулам:
R=Z·cosϕ; X=Z·sinϕ.
Недостатком известного способа является сложность его реализации, необходимость определения значения фазового сдвига между током и напряжением линейного токоограничивающего реактора/резистора.
Задачей изобретения является создание простого, точного, информативного способа определения параметров линейного токоограничивающего реактора/резистора для построения его модели.
Это достигается тем, что в способе определения параметров линейного токоограничивающего реактора/резистора для построения его модели, измеряют мгновенные значения сигналов напряжений и токов в одни и те же моменты времени
tj=t1, t2, ..., tN, с шагом дискретизации ,
где Т - период сигнала тока/напряжения,
N - число отсчетов на периоде T,
затем одновременно сохраняют цифровые отсчеты напряжений как текущие, определяют их разность, далее сохраняют цифровые отсчеты разности напряжений и тока как текущие и предыдущие, определяют разность текущего и предыдущего значений разности напряжений, суммируют текущее и предыдущее значения тока, перемножают разность значений разности напряжений и сумму тока, суммируют эти произведения, определяют потери реактивной мощности на реактивном сопротивлении линейного токоограничивающего реактора/резистора, одновременно перемножают текущие отсчеты сигналов и определяют потери активной мощности на активном сопротивлении линейного токоограничивающего реактора/резистора, и действующее значение тока, используя которые определяют активное и реактивное сопротивления.
Полученные значения R и Х являются исходными данными при создании модели линейного токоограничивающего реактора/резистора.
Простота предложенного способа заключается в том, что нет необходимости в дополнительных измерениях и устройствах для получения значений активного и реактивного сопротивлений линейного токоограничивающего реактора/резистора.
Точность предложенного способа заключается в том, что параметры схемы замещения линейного токоограничивающего реактора/резистора определяются непосредственно (напрямую), без дополнительных устройств вносящих погрешность измерений.
Предложенный способ является информативным за счет того, что позволяет определять все параметры линейного токоограничивающего реактора/резистора.
На фиг.1 приведена структурная схема реализации предложенного способа определения параметров линейного токоограничивающего реактора/резистора по массивам отсчетов мгновенных значений токов и напряжений при продольном (фиг.1а) и поперечном (фиг.1б) включениях.
На фиг.2 изображена аппаратная схема устройства, реализующего рассматриваемый способ определения параметров линейного токоограничивающего реактора/резистора по массивам отсчетов мгновенных значений токов и напряжений.
На фиг.3 приведены схемы замещения линейного токоограничивающего реактора/резистора при продольном (фиг.3а) и поперечном (фиг.3б) включениях.
В табл.1 приведены цифровые отсчеты мгновенных значений напряжений и токов , , токоограничивающего реактора РБ-10-400-0,35У3 и резистора ШС-300.
В табл.2 приведены результаты расчета параметров линейного токоограничивающего реактора и резистора.
В табл.3 приведены паспортные значения параметров линейного токоограничивающего реактора и резистора.
Способ может быть осуществлен с помощью устройства, представленного на фиг.1. В месте подключения токоограничивающего реактора/резистора 1 к шинам генераторного напряжения установлен регистратор аварийных ситуаций (РАС, на фиг.1 не показан) для создания массивов мгновенных значений напряжения и тока с шагом дискретизации Δt. Устройство для определения параметров линейного токоограничивающего реактора/резистора состоит из одного блока 2 расчета R, X, входы которого связаны с местом подключения токоограничивающего реактора/резистора через регистратор аварийных ситуаций, а выходы блока 2 расчета R, Х подключены к ЭВМ 3. На фиг.1а представлено продольное включение реактора/резистора, а на фиг.1б представлено поперечное включение реактора/резистора.
Блок 2 расчета R, Х (фиг.2) состоит из первого 4 (УВХ 1) и второго 5 (УВХ 2) устройств выборки и хранения, входы которых подключены к регистратору аварийных ситуаций. К первому устройству выборки-хранения 4 (УВХ 1) последовательно подключены первый инвертор 6, первый сумматор 7. Ко второму устройству выборки-хранения 5 (УВХ 2) последовательно подключены первый сумматор 7, третье устройство выборки-хранения 8 (УВХ 3), четвертое устройство выборки-хранения 9 (УВХ 4), второй инвертор 10, второй сумматор 11, выход которого связан с первым перемножителем 12. К первому перемножителю 12 последовательно подключены первый интегратор 13, первый перемножитель-делитель 14, выход которого подключен к ЭВМ 3. Вход пятого устройства выборки-хранения 15 (УВХ 5) подключен к регистратору аварийных ситуаций. Кроме того, к выходу третьего устройства выборки и хранения 8 (УВХ 3) подсоединен второй вход второго сумматора 11. К пятому устройству выборки-хранения 15 (УВХ 5) последовательно подключены шестое устройство выборки-хранения 16 (УВХ 6), третий сумматор 17, выход которого связан с первым перемножителем 12. К каждому устройству выборки-хранения подключен тактовый генератор 18 (ТГ). Входы третьего 8 (УВХ 3) и пятого 15 (УВХ 5) устройств выборки-хранения связаны со вторым перемножителем 19. Выход второго перемножителя 19 связан со вторым интегратором 20, выход которого соединен со вторым перемножителем-делителем 21, подключенным к ЭВМ 3. К выходу пятого устройства выборки-хранения 15 (УВХ 5) также подключены третий сумматор 17 и преобразователь действующих значений 22 (ПДЗ), выходы которого подключены к третьему перемножителю 23, связанному с входами первого 14 и второго 21 перемножителей-делителей.
Все устройства выборки-хранения реализованы на микросхемах 1100СК2. Программатор действующих значений 22 (ПДЗ) выполнен на микроконтроллере серии 51 производителя atmel AT89S53. Инверторы, сумматоры и интеграторы реализованы на операционных усилителях 140УД17А. В качестве перемножителей и перемножителей-делителей может быть использована микросхема 525ПСЗ. Тактовый генератор 18 (ТГ) может быть реализован на микроконтроллере АТ80С2051.
Для исследований были выбраны резистор ШС-300 и токоограничивающий реактор РБ-10-400-0,35У3.
На входы блока 2 расчета R, Х устройства, реализующего способ определения параметров линейного токоограничивающего реактора/резистора для построения его модели, подают следующие сигналы:
1) одновременно , , на входные шины блока 2 расчета R, Х при продольном включении линейного токоограничивающего реактора/резистора,
2) одновременно , на входные шины блока 2 расчета R, Х при поперечном включении линейного токоограничивающего реактора/резистора,
где - массив отсчетов мгновенных значений напряжения в начале линейного токоограничивающего реактора/резистора,
- массив отсчетов мгновенных значении тока в начале линейного токоограничивающего реактора/резистора,
- массив отсчетов мгновенных значений напряжения в конце линейного токоограничивающего реактора/резистора.
При продольном включении линейного токоограничивающего реактора/резистора блока 2 расчета R, Х на вход первого устройства выборки-хранения 4 (УВХ 1) поступает сигнал u2(tj), на вход второго устройства выборки-хранения 5 (УВХ 2) сигнал u1(tj), а на вход пятого устройства выборки-хранения 15 (УВХ 5) сигнал i1(tj),
где tj=t1, t2, ..., tN - моменты времени,
- число разбиений на периоде T,
Δt=0,625·10-3 с - шаг дискретизации массивов мгновенных значений тока/напряжения.
Значения сигналов записывают в блоки выборки-хранения 4 (УВХ 1), 5 (УВХ 2) и 15 (УВХ 5) и хранят там, как текущие, затем с выхода устройства выборки-хранения 4 (УВХ 1) сигнал u2(tj) поступает на первый инвертор 6. С помощью инвертора 6 отрицательное значение предыдущего сигнала u2(tj) преобразовывают в положительное. С выхода инвертора 6 значение сигнала u2(tj) поступает на вход первого сумматора 7. В то же время с выхода устройства выборки-хранения 5 (УВХ 2), значение сигнала u1(tj) поступает на второй вход первого сумматора 7. С помощью сумматора 7 определяют разность значений сигналов u1(tj)-u2(tj). С выхода первого сумматора 7 разность значений сигналов u1(tj)-u2(tj) поступает в третье устройство выборки-хранения 8 (УВХ 3) и на вход второго перемножителя 19. Одновременно значение сигнала i1(tj) поступает в блок выборки-хранения 15 (УВХ 5) и на второй вход второго перемножителя 19. Значения сигналов, записанные в блоки выборки-хранения 8 (УВХ 3) и 15 (УВХ 5) хранят там, как текущие. С выхода устройства выборки-хранения 8 (УВХ 3) сигнал u1(tj)-u2(tj) поступает на вход сумматора 11 и в устройство выборки-хранения 9 (УВХ 4), в котором становится предыдущим значением, а с выхода устройства выборки-хранения 15 (УВХ 5), значение сигнала i1(tj) поступает на первый и второй входы программатора действующих значений 22 (ПДЗ), затем поступает в устройство выборки-хранения 16 (УВХ 6) и становится предыдущим значением. На выходах программатора действующих значений 22 (ПДЗ) получают действующие значения сигналов
I1 и
С выходов программатора действующих значений 22 (ПДЗ) действующие значения сигналов I1 и I1 поступают на входы перемножителя 23. С помощью третьего перемножителя 23 значения сигналов I1 и I1 перемножают и подают на входы первого 14 и второго 21 перемножителей-делителей. С выхода четвертого устройства выборки-хранения 9 (УВХ 4) предыдущее значение сигнала u1(tj)-u2(tj) поступает во второй инвертор 10, с помощью которого отрицательное значение предыдущего сигнала u1(tj)-u2(tj) преобразовывают в положительное. С выхода второго инвертора 10 значение сигнала u1(tj)-u2(tj) поступает на вход второго сумматора 11. В то же время с выхода третьего устройства выборки-хранения 8 (УВХ 3) текущее значение сигнала u1(tj)-u2(tj) поступает на вход второго сумматора 11, с помощью которого определяют разность текущего и предыдущего значений сигнала u1(tj)-u2(tj). Одновременно с описанным выше процессом, с выхода шестого устройства выборки-хранения 16 (УВХ 6) предыдущее значение сигнала i1(tj) поступает на вход третьего сумматора 17 и с выхода пятого устройства выборки-хранения 15 (УВХ 5) текущее значение сигнала i1(tj) поступает на вход третьего сумматора 17. С помощью третьего сумматора 17 определяют сумму текущего и предыдущего значений сигнала i1(tj). С выхода второго сумматора 11 разность текущего и предыдущего значений сигнала u1(tj)-u2(tj) поступает на вход первого перемножителя 12, а с выхода третьего сумматора 17 сумма текущего и предыдущего значений сигнала i1(tj) поступает на вход первого перемножителя 12. С помощью первого перемножителя 12 значения разности и суммы сигналов перемножают и подают на вход первого интегратора 13. С помощью первого интегратора 13 суммируют произведения разности и суммы сигналов и определяют значение потери реактивной мощности ΔQ1: . С выхода первого интегратора 13 значение потери реактивной мощности поступает на вход первого перемножителя-делителя 14. В то же время с помощью второго перемножителя 19 определяют произведения текущих значений сигналов u1(tj)-u2(tj) и i1(tj), которые поступают на вход второго интегратора 20. С помощью второго интегратора 20 определяют потери активной мощности ΔP1:
С выхода второго интегратора 20 значение потери активной мощности поступает на вход второго перемножителя-делителя 21. С помощью первого перемножителя-делителя 14 определяют значение реактивного сопротивления линейного токоограничивающего реактора/резистора (фиг.3а):
С помощью второго перемножителя-делителя 21 определяют значение активного сопротивления линейного токоограничивающего реактора/резистора (фиг.3а): .
При поперечном включении линейного токоограничивающего реактора/резистора работа блока 2 расчета R, Х аналогична работе блока расчета при продольном включении реактора/резистора, но на вход первого устройства выборки-хранения 4 (УВХ 1) сигнал не поступает (u2(tj)=0), на вход второго устройства выборки-хранения 5 (УВХ 2) сигнал u1(tj), а на вход третьего устройства выборки-хранения 15 (УВХ 5) сигнал i1(tj).
Значения сигналов записывают в блоки выборки-хранения 5 (УВХ 2) и 15 (УВХ 5) и хранят там, как текущие. С выхода второго устройства выборки-хранения 5 (УВХ 2), значение сигнала u1(tj) поступает на второй вход первого сумматора 7. С помощью первого сумматора 7 определяют разность значений сигналов u1(tj)-u2(tj). С выхода первого сумматора 7 разность значений сигналов u1(tj)-u2(tj)=u1(tj) поступает в устройство выборки-хранения 8 (УВХ 3) и на вход второго перемножителя 19. Одновременно значение сигнала i1(tj) поступает в пятый блок выборки-хранения 15 (УВХ 5) и на второй вход второго перемножителя 19. В остальном работа блока 2 расчета R, Х при поперечном включении токоограничивающего реактора/резистора аналогична работе блока 2 расчета R, Х при продольном включении и заключается в том, что определяют действующие значения токов I1 и I1 по формуле:
Затем сохраняют каждый цифровой отсчет как текущий и предыдущий, далее определяют разность и сумму каждой пары текущего и предыдущего значений, перемножают разность и сумму, затем суммируют произведения. Далее определяют потери реактивной мощности ΔQ1 на реактивном сопротивлении X линейного токоограничивающего реактора/резистора:
Далее перемножают текущие отсчеты сигналов и определяют потери активной мощности ΔP1 на активном сопротивлении R линейного токоограничивающего реактора/резистора:
Затем определяют параметры R и X (фиг.3, б) по формулам:
,
По результатам расчетов из табл.2 видно, что параметры линейного токоограничивающего реактора/резистора, полученные с помощью предлагаемого способа, являются близкими по значению к их паспортным значениям. Относительную погрешность ε вычисляли по формуле [Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся ВТУЗов. - М.: Наука, 1980. - 976 с.]:
где a=R (расчетное значение параметра) является приближенным значением числа z=RПАСП (паспортное значение из табл.3).
- линейный токоограничивающий реактор
для R
для X
- резистор
для R
для X
Таким образом, получен простой, точный и информативный способ определения параметров линейного токоограничивающего реактора/резистора по массивам отсчетов мгновенных значений токов и напряжений для построения его модели.
Способ определения параметров линейного токоограничивающего реактора/резистора для построения его модели заключается в проведении измерений мгновенных значений тока и напряжения. Массивы отсчетов мгновенных значений тока и напряжения , , получают в одни и те же моменты времени tj=t1, t2, ..., tN, с шагом дискретизации , где Т - период сигнала тока/напряжения;
N - число отсчетов на периоде Т. Затем одновременно сохраняют цифровые отсчеты напряжений как текущие, определяют их разность. Далее сохраняют цифровые отсчеты разности напряжений и тока как текущие и предыдущие, определяют разность текущего и предыдущего значений разности напряжений, суммируют текущее и предыдущее значения тока, перемножают разность значений разности напряжений и сумму тока, суммируют эти произведения. Затем определяют потери реактивной мощности на реактивном сопротивлении линейного токоограничивающего реактора/резистора. Далее одновременно перемножают текущие отсчеты сигналов и определяют потери активной мощности на активном сопротивлении линейного токоограничивающего реактора/резистора, и действующее значение тока, используя которые определяют активное и реактивное сопротивления. Технический результат заключается в упрощении, повышении точности и информативности. 3 ил., 3 табл.
Способ определения параметров линейного токоограничивающего реактора/резистора для построения его модели, включающий измерение напряжения и тока, отличающийся тем, что проводят измерение мгновенных значений сигналов напряжения и тока, затем по массивам отсчетов мгновенных значений тока и напряжения полученным в одни и те же моменты времени tj=t1, t2, ..., tN, с шагом дискретизации
где Т - период сигнала тока/напряжения;
N - число отсчетов на периоде Т,
одновременно сохраняют цифровые отсчеты напряжений как текущие, определяют их разность, далее сохраняют цифровые отсчеты разности напряжений и тока как текущие и предыдущие, определяют разность текущего и предыдущего значений разности напряжений, суммируют текущее и предыдущее значения тока, перемножают разность значений разности напряжений и сумму тока, суммируют эти произведения, определяют потери реактивной мощности на реактивном сопротивлении линейного токоограничивающего реактора/резистора, одновременно перемножают текущие отсчеты сигналов и определяют потери активной мощности на активном сопротивлении линейного токоограничивающего реактора/резистора, и действующее значение тока, используя которые определяют активное и реактивное сопротивления.
Авторы
Даты
2008-06-20—Публикация
2006-12-21—Подача