Изобретение относится к области ультразвуковой очистки и может быть использовано в электронной промышленности для очистки от стеклянной крошки и различных загрязнений внутренней поверхности баллонов, используемых при изготовлении герконов различного типоразмера.
Технический результат - повышение качества очистки заготовки стеклянного баллона от стеклянной крошки, приварившейся к внутренней поверхности при оплавлении торцов баллона.
Для геркона недопустимо наличие на поверхности стеклянного баллона как органических, так и неорганических загрязнений в виде пыли и стеклянной крошки, образующейся при нарезке заготовки баллона из стеклянного капилляра. Попадание стеклянной крошки в область контактирования приводит к незамыканию геркона и к отказам в реле, использующих герконы.
Известные способы очистки стекла от органических и неорганических загрязнений изложены в литературных источниках [1, 2].
Наиболее близким способом является технологический процесс, используемый в серийном производстве герконов различного типоразмера согласно технологической карты СЯО.735.604 ТК.
Технологический процесс химической очистки заготовок стеклянных баллонов с использованием технологической оснастки, имеющей форму круглой корзины с сетчатым дном диаметром «Dк», включающий следующие друг за другом промывки в двух отдельных ваннах, заполненных (3-5)% водным раствором плавиковой (HF) кислоты в течение 5 минут, трехкратное погружение в одну и последующую промывку в течение 1 минуты в другой из двух ванн, заполненных 30% водным раствором азотной (Н2NO3) кислоты, промывку в трех ваннах, заполненных проточной водой, начиная с трехкратного погружения в каждую из первых двух ванн и заканчивая выдержкой в течение 1 минуты в третьей ванне, промывку в ванне с деионизованной водой под душем повышенного давления в течение 2 минут, осушку трехкратным погружением в ванну, заполненную 50% водным раствором спирта этилового (С2Н5OH) ректифицированного высшей очистки, осушку трехкратным погружением в ванну, заполненную 85% водным раствором спирта этилового (C2H5OH) ректифицированного высшей очистки.
Однако данный способ имеет ряд недостатков:
- неполное растворение стеклянных крошек с размерами более 10 мкм;
- длительное воздействие на технологическую оснастку агрессивной азотной кислоты.
- недостаточно хорошие санитарно-гигиенические условия труда.
Задачей предлагаемого изобретения является упрощение способа очистки, снижение трудоемкости его выполнения, повышение производительности труда, повышение качества очистки торцов заготовок стеклянного баллона от стеклянной крошки, приварившейся к внутренней поверхности после оплавления торцов баллона.
Поставленная задача решается тем, что в способе очистки стеклянных баллонов с использованием технологической оснастки, имеющей форму круглой корзины с сетчатым дном диаметром "Dк", включающем промывку в (3-5)% водном растворе плавиковой кислоты (HF), промывку в проточной воде, промывку в деионизованной воде под душем повышенного давления, осушку трехкратным погружением в ванну, заполненную 50% водным раствором спирта этилового (С2Н5OH) ректифицированного высшей очистки, осушку трехкратным погружением в ванну, заполненную 85% водным раствором спирта этилового (С2Н5OH) ректифицированного высшей очистки, промывку в (3-5)% водном растворе плавиковой кислоты (HF) производят в одной ванне с наложением ультразвука в течение (5-7) минут с последующим трехкратным погружением в каждую из двух ванн, заполненных (35-38)% водным раствором соляной (HCl) кислоты, а после промывки в деионизоанной воде под душем повышенного давления вводят дополнительно промывку в деионизованной воде с наложением ультразвука в течение 5-и минут, при этом операции промывок с наложением ультразвука осуществляют в диапазоне частот (16,8-23,5) кГц в режиме выходной мощности Р1≥5 Вт в течение времени t1≥5 минут на частоте ультразвукового генератора "fг", обеспечивающей соотношение длины волны λ=с/fг, где "с"=1457 м/с - скорость распространения ультразвуковых колебаний в деионизованой воде при температуре +20°С; с максимальными габаритными размерами технологической оснастки в пределах неравенства 0,5<λ/Dк.
Качество очистки стеклянных баллонов от стеклянной крошки повышается, если угол наклона "α°" сетчатого дна корзины относительно поверхности ультразвукового излучателя ограничен неравенством 0≤α<75°.
Согласно [3] энергетическое поле ультразвукового излучателя представляет полусферу, поэтому наклон корзины увеличивает объем трубок, обрабатываемых в области максимума излучаемой мощности, а также позволяет более полно использовать энергию, проходящую внутри стеклянной трубки, расположенной перпендикулярно к поверхности излучателя.
Совокупность отличительных признаков, заключающихся в проведении первой и финишной промывок с наложением ультразвука, приводит к достижению нового технического результата.
Способ осуществляется следующим образом. Для каждого типа герконов (от МКА-07101 с длиной баллона 7 мм до МКА-50202 с длиной баллона 50 мм) из стеклянных трубок нарезаются заготовки с размерами, представленными в таблице 1.
Геометрические размеры стеклянных трубок.
После оплавления торцов на газовой горелке стеклянные баллоны плотно укладывают торцами на сетчатое дно технологической оснастки, представляющей собой металлическую круглую корзинку из нержавеющей стали диаметром "Dк"=100 мм. Заполненные корзинки устанавливают в один или два слоя на дно ультразвуковой ванны размером 970×880×965 мм3 с двумя магнитострикционными излучателями размером 300×300 мм2 каждый, расположенных встык на дне ванны. Излучатели подключают к выходу генератора ультразвуковых колебаний типа УЗГ 2-4М с регулировкой выходной мощности до 4,5 кВт в диапазоне частот (16,8-23,5) кГц. Ванну заполняют (3-5)% водным раствором плавиковой кислоты (или деионизованной водой в другой ванне) до уровня, превышающего на (10-20) мм высоту корзинок. Температурный режим для растворов кислот, воды и спирта соответствует нормальным условиям и находится в пределах +20°С.
Энергия, затрачиваемая генератором в процессе очистки баллона равняется произведению мощности ультразвукового облучения на длительность его воздействия (Р·t)Вт·сек и находится в пределах (1500-2100) Дж. Качество очистки оценивалось путем взвешивания массы осадка из стеклянной крошки, осаждающейся на дне ванны.
В таблице 2 приведены сравнительные результаты очистки стеклянных баллонов по существующей промышленной технологии и по предлагаемому способу для различных типов герконов.
Масса (г) сухого осадка с одной корзины.
В таблице 3 приведены результаты оценки влияния угла наклона "α°" сетчатого дна корзины к поверхности ультразвукового излучателя на качество очистки стеклянных баллонов при проведении очистки с наложением ультразвука при λ/Dк=0,8 для различных типов герконов.
Масса (г) сухого остатка с одной корзины.
Предлагаемая совокупность отличительных признаков позволила добиться нового положительного эффекта. Так, замена первых двух ванн с плавиковой кислотой на одну ванну с наложением ультразвука позволила уменьшить расход материалов, снизить трудоемкость технологического процесса и улучшить санитарно-гигиенические условия работы с вредными сильнодействующими кислотами.
Использование предлагаемого способа очистки в промышленных условиях производства герконов позволило снизить количество рекламаций и приблизиться к мировому уровню качества, снизив загрязненность экспортных партий герконов по отказам из-за перемещающихся стеклянных крошек с 300 до 50 бракованных герконов на партию в один миллион штук.
Источники информации
1. Б.Роус. "Стекло в электронике". Советское радио, Москва, 1969.
2 Н.В.Черепнин. "Основы очистки, обезгаживания и откачки в вакуумной технике". Советское радио, Москва, 1967.
3. O.K.Келлер, Г.С.Кратыш, Г.Д.Лубяницкий. "Ультразвуковая очистка". Машиностроение, Ленинград, 1977, стр.143.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ ГЕРКОНА С КАРБОНИТРИРОВАННЫМИ КОНТАКТНЫМИ ПОВЕРХНОСТЯМИ | 2010 |
|
RU2457567C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ГЕРКОНА С АЗОТИРОВАННЫМИ КОНТАКТ-ДЕТАЛЯМИ | 2009 |
|
RU2393570C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ГЕРКОНА С КОНТРОЛИРУЕМЫМИ ПАРАМЕТРАМИ АЗОТИРУЕМОГО СЛОЯ | 2011 |
|
RU2467425C1 |
Способ очистки археологического шерстяного и растительного текстиля, а также современной шерсти животных для изучения изотопного состава стронция методом масс-спектрометрии | 2021 |
|
RU2795768C1 |
Способ очистки перед пайкой припоя, выполненного в виде фольги или ленты | 2017 |
|
RU2644486C1 |
СПОСОБ ОЧИСТКИ ОПТИЧЕСКИХ ДЕТАЛЕЙ | 1992 |
|
RU2010629C1 |
Способ изготовления герконов | 2022 |
|
RU2805999C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ГЕРКОНА С АЗОТИРОВАННЫМИ И НАНОСТРУКТУРИРОВАННЫМИ КОНТАКТНЫМИ ПОВЕРХНОСТЯМИ | 2018 |
|
RU2664506C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ГЕРКОНА С АЗОТИРОВАННЫМИ КОНТАКТНЫМИ ПЛОЩАДКАМИ | 2018 |
|
RU2665689C1 |
СПОСОБ ПОЛУЧЕНИЯ ФОТОШАБЛОННЫХ ЗАГОТОВОК | 2005 |
|
RU2308179C1 |
Изобретение относится к области ультразвуковой очистки и может быть использовано в электронной промышленности для очистки от стеклянной крошки и различных загрязнений внутренней поверхности заготовок стеклянного баллона, используемых при изготовлении герконов. Изобретение обеспечивает повышение качества очистки торцов заготовок стеклянного баллона от стеклянной крошки, приварившейся к внутренней поверхности после оплавления торцов баллона. Способ осуществляют с использованием технологической оснастки, имеющей форму круглой корзины с сетчатым дном диаметром "Dк". Он включает промывку в 3-5% водном растворе плавиковой кислоты (HF), промывку в проточной воде, промывку в деионизованной воде под душем повышенного давления, осушку трехкратным погружением в ванну, заполненную 50% водным раствором спирта этилового (C2Н5OH) ректифицированного высшей очистки, осушку трехкратным погружением в ванну, заполненную 85% водным раствором спирта этилового (C2Н5OH) ректифицированного высшей очистки. Промывку в 3-5% водном растворе плавиковой кислоты производят в одной ванне с наложением ультразвука в течение 5-7 минут с последующим трехкратным погружением в каждую из двух ванн, заполненных 35-38% водным раствором соляной (HCl) кислоты. После промывки в деионизованной воде под душем повышенного давления вводят дополнительно промывку в деионизованной воде с наложением ультразвука в течение 5 минут. Промывки с наложением ультразвука осуществляют в диапазоне частот 16,8-23,5 кГц в режиме выходной мощности Р1≥5 Вт в течение времени t1≥5 мин на частоте ультразвукового генератора "fг", обеспечивающей соотношение длины волны λ=c/fг, где с=1457 м/с - скорость распространения ультразвуковых колебаний в деионизованной воде при температуре +20°С, с максимальными габаритными размерами технологической оснастки в пределах неравенства 0,5<λ/Dк. 1 з.п. ф-лы, 3 табл.
Устройство для очистки изделий | 1986 |
|
SU1313535A1 |
US 6030463 А, 29.02.2000 | |||
US 2004023510 A1, 05.02.2004 | |||
RU 2003100023 А, 10.08.2004. |
Авторы
Даты
2008-07-10—Публикация
2006-09-28—Подача