Изобретение относится к металлургии, в частности к электродным материалам для электроискрового легирования (ЭИЛ) стальных и чугунных поверхностей.
Существует проблема увеличения срока службы изделий из железоуглеродных сплавов. Одним из путей увеличения срока службы изделий является повышение их коррозионной стойкости путем нанесения покрытия методом ЭИЛ. В известных решениях проблема повышения коррозионной стойкости решается различными путями, например, за счет уменьшения гальванических пар в структуре материала электродов или за счет увеличения переноса материала на защищаемую поверхность детали методом ЭИЛ.
Известен электродный материал для ЭИЛ [1], который выполнен из белого чугуна и в своем составе содержит углерод 2,88%, марганец до 2,9%, кремний 1% и железо остальное.
Микроструктура электродного материала состоит из металлической основы-феррита и вторичного цементита, при этом графит находится в связанном состоянии. В контакте с агрессивной средой структурные составляющие образуют гальванические пары, в которых феррит является анодом, цементит - катодом. При работе гальванического элемента ферритная составляющая окисляется, что приводит к разрушению металлической основы.
Разность потенциалов гальванического элемента цементит - феррит равна 0,01В.
Достоинством электродного материала из белого чугуна является совместимость его физико-химических свойств со свойствами материала деталей, которые выполнены из железоуглеродистых сплавов. Кроме того, чугун обладает высокими литейными и эксплуатационными свойствами.
Недостатком указанного электродного материала является наличие мелкодисперсного цементита из-за небольшого содержания углерода.
Измельчение структурных составляющих материала приводит к увеличению количества гальванических пар, а это, в свою очередь, усиливает интенсивность протекания коррозии.
Другим недостатком электродного материала является высокая температура плавления и, как следствие, высокая эрозионная стойкость.
Высокая эрозионная стойкость электрода, равная 38,4-10-4 г/см2, ограничивает перенос материала на защищаемую поверхность детали методом ЭИЛ. При этом перенос составляет 26,5-10-4 г/см, а образующиеся покрытие имеет толщину до 0,2 мкм. Малая толщина покрытия из-за высокой эрозионной стойкости электрода обуславливает его пористость, следовательно, оно малоэффективно в коррозионной среде. Визуально-оптическая оценка покрытия железоуглеродистого сплава после ЭИЛ показала наличие окислов на поверхности до 22%, а доля плазменного переноса материала электрода на поверхность составляет около 25%.
Наиболее близким по технической сущности и получаемому результату является электродный материал для ЭИЛ [2], который выполнен из белого чугуна и в своем составе содержит углерод 4,0-4,5%, марганец 0,5-0,6%, кремний 0,8-0,9% и железо остальное.
Структура электродного материала состоит из основы, которая представляет собой эвтектику (смесь феррита и цементита) и первичного цементита.
В контакте с агрессивной средой структурные составляющие образуют гальванические пары, в которых феррит, входящий в состав эвтектики, является анодом, цементит - катодом. При работе гальванического элемента ферритная составляющая окисляется, что приводит к разрушению металлической основы.
Покрытие, как показывает визуально-оптическое исследование, после ЭИЛ содержит до 5% окислов железа. Доля плазменного переноса материала электрода составляет около 62%. Кроме того, увеличение содержания углерода приводит к увеличению размера цементита в структуре материала за счет первичной кристаллизации, способствует образованию эвтектики в материале электрода. Эвтектика в электродном материале снижает температуру плавления.
Достоинствами данного электродного материала является снижение температуры плавления которая, как следствие, приводит к уменьшению эрозионной стойкости электрода до 82,0-10-4 г/см2. В свою очередь, с уменьшением эрозионной стойкости увеличивается массоперенос на защищаемую поверхность, который составляет не менее 45-10-4 г/см2.
Увеличение массопереноса приводит к росту толщины покрытия до 0,5-0,8 мкм. Увеличение толщины покрытия увеличивает его коррозионную стойкость.
Другим достоинством электродного материала является увеличение размера цементита в структуре электродного материала, которое приводит к уменьшению гальванических пар, а это уменьшение, в свою очередь, - к увеличению коррозионной стойкости покрытия.
Недостатком указанного состава электродного материала является то, что получаемое покрытие в агрессивной среде является некоррозионно-стойким.
Это обусловлено наличием гальванических пар, совокупность которых в агрессивной среде создает высокую ЭДС. Высокая ЭДС приводит к разрушению покрытия по электрохимическому механизму. Во-вторых, наличие окислов железа в покрытии также снижает его коррозионную стойкость.
Задача, решаемая изобретением, заключается в разработке электродного материала для ЭИЛ, обладающего высокой коррозионной стойкостью за счет уменьшения в нем ЭДС совокупности гальванических пар.
Для решения поставленной задачи в известный электродный материал для ЭИЛ, выполненный на основе белого чугуна, содержащего углерод, марганец, кремний и железо, дополнительно введен хром при следующем соотношении компонентов, мас.%:
углерод 4,0-4,5
марганец 0,5-0,6
кремний 0,8-0,9
хром 7-10,5
железо остальное
Введение в электродный материал хрома отличает заявляемое решение от прототипа, что свидетельствует о соответствии заявляемого решения критерию патентоспособности «новизна».
Благодаря введению хрома в электродный материал повышается коррозионная стойкость. Это обусловлено тем, что хром входит в структуру эвтектики и первичного цементита. Во-первых, наличие хрома в структуре электродного материала как более активного элемента приводит к тому, что в гальванической паре эвтектика-цементит он выступает в качестве анода. При работе гальванического элемента хром окисляется и образует защитную пленку на покрытии, за счет чего уменьшается ЭДС гальванических пар.
Во-вторых, благодаря тому, что хром по сравнению с железом обладает более высоким электрическим сопротивлением, что увеличивает количество энергии для переноса материала электрода.
Благодаря этому структурные составляющие электрода успевают проплавиться в полном объеме. Наличие проплавленного материала позволяет осуществить плазменный перенос материала электрода на поверхность деталей, что приводит к увеличению толщины покрытия, а следовательно, увеличивает его коррозионную стойкость, уменьшается ЭДС гальванических за счет сокращения оксидов железа в покрытии.
Доля плазменного переноса материала электрода на поверхность составила около 68%.
Неочевидный результат заключается в том, что плазменный перенос в покрытии осуществляется только при содержании в материале электрода хрома в пределах 7-10,5%. Получение плазменного покрытия в зависимости от количественного соотношения хрома в электродном материале не вытекает из известного уровня техники и свидетельствует о соответствии заявляемого решения критерию патентоспособности «изобретательский уровень».
Заявляемый электродный материал выполнен на основе белого чугуна и содержит углерод, марганец, кремний, хром и железо. Компоненты выбраны в следующем интервале, мас.%:
углерод 4,0-4,5
марганец 0,5-0,6
кремний 0,8-0,9
хром 7-10,5
железо остальное
Для экспериментальной проверки заявляемого электродного материала были подготовлены составы, указанные в табл.1.
Пример 1.
В качестве базового сплава использовали эвтектический чугун, выполненный из белого чугуна с содержанием, мас.%: углерода 4,25, марганца 0,55, кремния 0,85, железо остальное, и добавляли хром 9,0.
Выплавку электродного материала производили в печи Таммана с графитовым нагревателем. Исходный материал расплавляли, затем нагревали до температуры 1450°С, после выдержки в течение 5 минут вводили легирующие.
После растворения легирующих и выдержки были получены электроды, методом вакуумного всасывания (создавая разрежение 0,5-1,5 мм рт. ст.), отбирали расплав в кварцевые трубки диаметром 2,5 мм. Выбранная технология получения электродных материалов позволяет исключить стадию обработки, снизить влияние процессов вторичного окисления при литье, варьировать химический состав электродов в широком интервале концентраций.
Примеры 2-5.
Электродный материал приготавливают, как в примере 1, изменяя состав, приводимый в табл.1.
Полученным электродным материалом обрабатывали методом ЭИЛ образцы 10×10×5 мм стали марки 45 (в отожженном и закаленном состояниях) и чугуна СЧ15.
Процесс коррозии изучали в кислой среде, в качестве коррозионной среды использовали 12% раствор соляной кислоты. Результаты исследования полученной коррозионной стойкости представлены в табл. 2.
Как видно из табл. 2, оптимальное содержание хрома в электродном материале находится в пределах 7-10,5 (мас.%), в которых наблюдается наименьшая скорость коррозии, а следовательно, увеличивается коррозионная стойкость покрытия.
При количестве хрома до 7 (мас.%) не обеспечивается достаточное качество покрытия, увеличивается скорость коррозии, что приводит к уменьшению коррозионной стойкости покрытия.
Увеличение хрома свыше 10,5 (мас.%) увеличивает эрозионную стойкость электрода и уменьшает перенос материала на защищаемую поверхность детали хрома и, следовательно, уменьшает коррозионную стойкость покрытия.
Таким образом, результаты испытаний показывают, что скорость коррозии в агрессивной среде покрытия, в результате применения заявляемого электродного материала, уменьшается на 40% (в 1,6 раза) по сравнению с прототипом.
Литература
1. Иванов Г.П. Технология электроискрового упрочнения инструмента и деталей машин. - М.: 1961, с.299.
2. 2. Патент №2181646 МПК 7 В23Н 9/00, С22С 37/10. Электродный материал для электроискрового легирования / Химухин С.Н., Муромцева Е.В. (РФ); Институт материаловедения ДВО РАН. Опубл. 27.04.02. Бюл. №12.
название | год | авторы | номер документа |
---|---|---|---|
ЭЛЕКТРОДНЫЙ МАТЕРИАЛ ДЛЯ ЭЛЕКТРОИСКРОВОГО ЛЕГИРОВАНИЯ | 2000 |
|
RU2181646C2 |
ПОРОШКОВЫЙ СПЛАВ НА ОСНОВЕ ЖЕЛЕЗА ДЛЯ ИЗНОСОСТОЙКОЙ НАПЛАВКИ И НАПЫЛЕНИЯ | 2015 |
|
RU2607066C2 |
Чугун | 1982 |
|
SU1065493A1 |
Белый чугун для мелющих тел | 1990 |
|
SU1715876A1 |
Эвтектический сплав | 1989 |
|
SU1793000A1 |
Эвтектический сплав | 1989 |
|
SU1733494A1 |
ПОГРУЖНОЙ МНОГОСТУПЕНЧАТЫЙ ЦЕНТРОБЕЖНЫЙ НАСОС И СПОСОБ ИЗГОТОВЛЕНИЯ РАБОЧЕГО КОЛЕСА И НАПРАВЛЯЮЩЕГО АППАРАТА СТУПЕНИ НАСОСА | 2014 |
|
RU2580611C2 |
ЧУГУН ДЛЯ РАБОЧЕГО СЛОЯ МУКОМОЛЬНЫХ ВАЛКОВ | 1994 |
|
RU2075531C1 |
Чугун | 1983 |
|
SU1120030A1 |
КОРРОЗИОННОСТОЙКАЯ ХРОМОМАРГАНЦЕВАЯ ФЕРРИТО-АУСТЕНИТНАЯ СТАЛЬ | 2004 |
|
RU2253689C1 |
Изобретение относится к металлургии, в частности к электродным материалам для искрового легирования стальных и чугунных поверхностей. Электродный материал выполнен на основе белого чугуна, содержит углерод, марганец, кремний, хром и железо при следующем соотношении компонентов, мас.%: углерод 4,0-4,5, марганец 0,5-0,6, кремний 0,8-0,9, хром 7,0-10,5, железо остальное. Электродный материал позволяет повысить коррозионную стойкость покрытия деталей. 2 табл.
Электродный материал для электроискрового легирования на основе белого чугуна, содержащего углерод, марганец, кремний и железо, отличающийся тем, что он дополнительно содержит хром при следующем соотношении компонентов, мас.%:
ЭЛЕКТРОДНЫЙ МАТЕРИАЛ ДЛЯ ЭЛЕКТРОИСКРОВОГО ЛЕГИРОВАНИЯ | 2000 |
|
RU2181646C2 |
1972 |
|
SU411974A1 | |
ЭЛЕКТРОДНЫЙ МАТЕРИАЛ ДЛЯ ЭЛЕКТРОИСКРОВОГО ЛЕГИРОВАНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 1991 |
|
RU2007274C1 |
МАТЕРИАЛ ЭЛЕКТРОДА-ИНСТРУМЕНТА ДЛЯ ЭЛЕКТРОЭРОЗИОННОЙ ОБРАБОТКИ | 1991 |
|
RU2014181C1 |
JP 08081731 А, 26.03.1996. |
Авторы
Даты
2008-07-10—Публикация
2006-09-18—Подача