СПОСОБ ИЗГОТОВЛЕНИЯ КАТАЛИТИЧЕСКИ АКТИВНОГО СЛОЯ ГАЗОДИФФУЗИОННОГО ЭЛЕКТРОДА Российский патент 2008 года по МПК H01M4/96 

Описание патента на изобретение RU2332752C1

Область техники

Изобретение относится к способам изготовления каталитически активного слоя (КАС) газодиффузионного электрода для топливных элементов (ТЭ).

Предшествующий уровень техники

Известен способ изготовления КАС газодиффузионного электрода (ГДЭ), включающий получение катализатора путем восстановления соли платины на углеродном носителе, нанесение дисперсии катализатора на подложку газодиффузионного электрода и последующую сушку (заявка Кореи № 20010067113, кл. Н01М 4/96, 2001). Недостатком указанного способа является низкая активность КАС.

Из известных способов изготовления КАС газодиффузионного электрода наиболее близким по совокупности существенных признаков является способ изготовления КАС, включающий получение платинового катализатора на углеродном носителе с наночастицами, приготовление суспензии катализатора и нанесение суспензии на подложку ГДЭ из углеродной бумаги (заявка США № 2006172179, кл. Н01М 4/96, 2006).

Сущность изобретения

Задачей изобретения является повышение каталитической активности КАС газодиффузионного электрода для ТЭ.

Указанный технический результат достигается за счет того, что в способе изготовления электрода, при котором платиновый катализатор на углеродном носителе получают путем обработки графита азотной кислотой с получением нитрата графита, полученный нитрат графита обрабатывают гексахлорплатиновой кислотой, полученное при этом соединение внедрения платины в графит подвергают восстановлению в токе водорода при температуре 150÷300°С с получением пенографита с нанокластерами платины, суспензию катализатора готовят путем пропитки пенографита с нанокластерами платины водно-спиртовым раствором. Перечень указанных технологических операций получения катализатора на углеродном носителе позволяет увеличить поверхность носителя, открыть каталитически активные частицы и, следовательно, повысить каталитическую активность КАС ГДЭ.

Целесообразно, чтобы суспензию катализатора подвергали ультразвуковому диспергированию. Это позволяет создать суспензию с более равномерным распределением катализатора, а следовательно, и КАС с однородной активностью по поверхности ГДЭ.

Целесообразно, чтобы при ультразвуковом диспергировании одновременно накладывали колебания частотой 100÷150 МГц при мощности 3 Вт и частотой 20÷40 МГц при мощности 1 кВт. Наложение колебаний при диспергировании также способствуют более равномерному распределению катализатора в суспензии и в КАС ГДЭ.

Целесообразно, чтобы в суспензию катализатора добавляли дисперсию политетрафторэтилена и протонпроводящего полимера. Это позволяет повысить прочность и проводимость КАС ГДЭ.

Проведенный анализ уровня техники показал, что заявленная совокупность существенных признаков, изложенная в формуле изобретения, неизвестна. Это позволяет сделать вывод о ее соответствии критерию "новизна".

Для проверки соответствия заявленного изобретения критерию "изобретательский уровень" проведен дополнительный поиск известных технических решений с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявленного технического решения. Установлено, что заявленное техническое решение не следует явным образом из известного уровня техники. Следовательно, заявленное изобретение соответствует критерию "изобретательский уровень".

Сущность изобретения поясняется примером практической реализации способа изготовления заявленного КАС ГДЭ.

Пример реализации.

Платиновый катализатор на углеродном носителе, полученный описанным выше методом, диспергировали в 50% вводно-спиртовом растворе с добавкой 5% смеси 1:1 политетрафторэтилена и протонпроводящего полимера ультразвуком при одновременном наложении колебания частотой 110 МГц при мощности 3 Вт и частотой 25 МГц при мощности 1 кВт до получения однородной дисперсии. Полученную дисперсию катализатора аэрографом наносили на пористую углеродную подложку ГДЭ. Подложку с каталитическим слоем подвергали сушке при температуре 80°С. Полученный электрод испытывали в составе ячейки водородно-кислородного ТЭ с полимерным электролитом при температуре 65°С. Установлено, что полученный электрод обладает высокими электрическими характеристиками, стабильными во времени.

На основании вышеизложенного можно сделать вывод, что заявленный способ изготовления КАС ГДЭ может быть реализован с достижением заявленного технического результата, т.е. он соответствуют критерию «промышленная применимость».

Похожие патенты RU2332752C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ КАТАЛИТИЧЕСКОГО СЛОЯ ЭЛЕКТРОДОВ ДЛЯ ТВЕРДОПОЛИМЕРНОГО ТОПЛИВНОГО ЭЛЕМЕНТА 2021
  • Засыпкина Аделина Алексеевна
  • Иванова Наталия Анатольевна
  • Спасов Дмитрий Дмитриевич
  • Меншарапов Руслан Максимович
  • Воробьева Екатерина Андреевна
RU2781052C1
СПОСОБ ПРИГОТОВЛЕНИЯ МЕМБРАН-ЭЛЕКТРОДНЫХ БЛОКОВ 2013
  • Грибов Евгений Николаевич
  • Окунев Алексей Григорьевич
RU2563029C2
СПОСОБ ИЗГОТОВЛЕНИЯ МЕТАЛЛ-ОКСИДНОГО КАТАЛИТИЧЕСКОГО ЭЛЕКТРОДА ДЛЯ НИЗКОТЕМПЕРАТУРНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ 2012
  • Фролова Любовь Анатольевна
  • Добровольский Юрий Анатольевич
RU2522979C2
МЕМБРАННО-ЭЛЕКТРОДНЫЙ БЛОК (МЭБ) ДЛЯ ТОПЛИВНОГО ЭЛЕМЕНТА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2007
  • Тарасевич Михаил Романович
  • Модестов Александр Давидович
RU2331145C1
СПОСОБ ИЗГОТОВЛЕНИЯ КАТАЛИТИЧЕСКОГО МАТЕРИАЛА ДЛЯ ТОПЛИВНОГО ЭЛЕМЕНТА 2009
  • Глебова Надежда Викторовна
  • Нечитайлов Андрей Алексеевич
RU2421849C1
МЕМБРАННО-ЭЛЕКТРОДНЫЙ БЛОК (МЭБ) ДЛЯ КИСЛОРОДНО(ВОЗДУШНО)-ВОДОРОДНОГО ТОПЛИВНОГО ЭЛЕМЕНТА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2007
  • Тарасевич Михаил Романович
  • Емец Виктор Владимирович
  • Богдановская Вера Александровна
RU2328797C1
СПОСОБ ИЗГОТОВЛЕНИЯ КАТАЛИТИЧЕСКОГО ЭЛЕКТРОДА НА ОСНОВЕ ГЕТЕРОПОЛИСОЕДИНЕНИЙ ДЛЯ ВОДОРОДНЫХ И МЕТАНОЛЬНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ 2012
  • Фролова Любовь Анатольевна
  • Добровольский Юрий Анатольевич
RU2561711C2
СПОСОБ ФОРМИРОВАНИЯ КАТАЛИТИЧЕСКОГО СЛОЯ ТВЕРДОПОЛИМЕРНОГО ТОПЛИВНОГО ЭЛЕМЕНТА 2018
  • Краснова Анна Олеговна
  • Глебова Надежда Викторовна
  • Нечитайлов Андрей Алексеевич
RU2701549C1
СПОСОБ ИЗГОТОВЛЕНИЯ МЕМБРАННО-ЭЛЕКТРОДНОГО БЛОКА С ТВЕРДЫМ ПОЛИМЕРНЫМ ЭЛЕКТРОЛИТОМ 2023
  • Засыпкина Аделина Алексеевна
  • Иванова Наталия Анатольевна
  • Спасов Дмитрий Дмитриевич
  • Меншарапов Руслан Максимович
  • Синяков Матвей Владимирович
  • Фатеев Владимир Николаевич
RU2805994C1
СПОСОБ ФОРМИРОВАНИЯ КАТАЛИТИЧЕСКОГО СЛОЯ ТВЕРДОПОЛИМЕРНОГО ТОПЛИВНОГО ЭЛЕМЕНТА 2011
  • Глебова Надежда Викторовна
  • Нечитайлов Андрей Алексеевич
  • Томасов Александр Александрович
  • Терукова Екатерина Евгеньевна
  • Филиппов Александр Константинович
RU2456717C1

Реферат патента 2008 года СПОСОБ ИЗГОТОВЛЕНИЯ КАТАЛИТИЧЕСКИ АКТИВНОГО СЛОЯ ГАЗОДИФФУЗИОННОГО ЭЛЕКТРОДА

Изобретение относится к способам изготовления каталитически активного слоя (КАС) газодиффузионного электрода для топливных элементов (ТЭ). Способ изготовления КАС газодиффузионного электрода включает получение платинового катализатора на углеродном носителе, приготовление суспензии катализатора, нанесение суспензии на подложку газодиффузионного электрода и последующую сушку, при этом платиновый катализатор на углеродном носителе получают путем обработки графита азотной кислотой с получением нитрата графита, который затем обрабатывают гексахлорплатиновой кислотой, а полученное соединение внедрения платины в графит подвергают восстановлению в токе водорода при температуре 150÷300°С с получением пенографита с нанокластерами платины, и готовят суспензию катализатора путем пропитки пенографита с нанокластерами платины водно-спиртовым раствором при ультразвуковом диспергировании. При ультразвуковом диспергировании могут одновременно накладывать колебания частотой 100÷150 МГц при мощности 3 Вт и частотой 20÷40 МГц при мощности 1 кВт. В суспензию катализатора могут добавлять дисперсию политетрафторэтилена и протонпроводящего полимера. Техническим результатом изобретения является повышение каталитической активности КАС газодиффузионного электрода для топливных элементов. 2 з.п. ф-лы.

Формула изобретения RU 2 332 752 C1

1. Способ изготовления каталитически активного слоя газодиффузионного электрода, включающий получение платинового катализатора на углеродном носителе, приготовление суспензии катализатора, нанесение суспензии на подложку газодиффузионного электрода и последующую сушку, отличающийся тем, что платиновый катализатор на углеродном носителе получают путем обработки графита азотной кислотой с получением нитрата графита, полученный нитрат графита обрабатывают гексахлорплатиновой кислотой, полученное при этом соединение внедрения платины в графит подвергают восстановлению в токе водорода при температуре 150÷300°С с получением пенографита с нанокластерами платины, суспензию катализатора готовят путем пропитки пенографита с нанокластерами платины водно-спиртовым раствором и подвергают ультразвуковому диспергированию.2. Способ изготовления каталитически активного слоя по п.1, отличающийся тем, что при ультразвуковом диспергировании одновременно накладывают колебания частотой 100÷150 МГц при мощности 3 Вт и частотой 20÷40 МГц при мощности 1 кВт.3. Способ изготовления каталитически активного слоя по п.1, отличающийся тем, что в суспензию катализатора добавляют дисперсию политетрафторэтилена и протонопроводящего полимера.

Документы, цитированные в отчете о поиске Патент 2008 года RU2332752C1

US 2006172179 A, 03.08.2006
ГАЗОДИФФУЗИОННЫЙ ЭЛЕКТРОД ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ИСТОЧНИКА ТОКА 1995
  • Туманов Б.И.
  • Кулаков Е.Б.
  • Гуськова Г.И.
  • Кароник В.В.
  • Макаров Н.Д.
  • Сысоева Л.Н.
RU2074459C1
ГАЗОДИФФУЗИОННЫЙ ЭЛЕКТРОД И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2000
  • Серопян Г.В.
  • Никольский И.А.
  • Косарев В.Г.
  • Федотов Г.П.
RU2170477C1
ТОПЛИВНЫЙ ЭЛЕМЕНТ ДЛЯ ПОРТАТИВНОГО РАДИОЭЛЕКТРОННОГО ОБОРУДОВАНИЯ 2003
  • Каричев З.Р.
  • Тарасевич М.Р.
  • Богдановская В.А.
RU2234766C1
СПИРТОВО-ВОЗДУШНЫЙ ТОПЛИВНЫЙ ЭЛЕМЕНТ 2002
  • Каричев З.Р.
  • Тарасевич М.Р.
RU2230400C1
JP 2007005152 A, 11.01.2007
KR 20040025987 A, 27.03.2004
US 2006228603 A, 12.10.2006.

RU 2 332 752 C1

Авторы

Дунаев Александр Вячеславович

Архангельский Игорь Валентинович

Добровольский Юрий Анатольевич

Авдеев Виктор Васильевич

Алдошин Сергей Михайлович

Даты

2008-08-27Публикация

2007-04-03Подача