Изобретение относится к теплотехнике, в частности к средствам поджига двухкомпонентных, в том числе и двухфазных, смесей, и может быть использовано при создании различных тепловых машин и ракетных двигателей.
В настоящее время одной из основных проблем при создании воспламенителей для поджига ракетного топлива является повышение эксплуатационной надежности при упрощении конструкции и снижении габаритно-массовых характеристик системы воспламенения.
Одним из путей, позволяющих повысить эксплуатационную надежность и снизить габаритно-массовые характеристики системы воспламенения, является использование запальников, основанных на газодинамическом принципе воспламенения топлива. Отсутствие в них электрических блоков воспламенения уменьшает массовые характеристики системы. В газодинамических воспламенителях используется кинетическая энергия сжатого газа для нагрева элемента конструкции, называемого резонатором, до высокой температуры, при контакте с которым смеси компонентов воспламеняются.
Известен газодинамический воспламенитель, содержащий реверберационную камеру (форкамеру), на входе в которую установлено сопло, на выходе - резонатор с тонкостенным стаканом па торце. Со стороны резонатора к форкамере соосно с ней пристыкована дополнительная камера с диффуззорными каналами, по оси сопла в форкамере установлена форсунка, торец которой выполнен заподлицо с выходным сечением сопла (а.с. №1255818 A1, F23Q 13/00, 1985 - прототип).
Указанный воспламенитель работает следующим образом. Сжатый газ (воздух) разгоняется в сопле. Одновременно со сжатым воздухом через форсунку под давлением подается горючее - газ, соответствующий стехиометрическому соотношению. В форкамере оба газа смешиваются и образуют горючую смесь. Истекающая из сопла сильно недорасширенная струя горючей смеси взаимодействует с резонатором. При определенном расстоянии между соплом и резонатором внутри последнего возбуждаются высокочастотные колебания давления, и перед резонатором возникают ударные волны. Взаимодействие ударных волн, высокочастотные колебания газа в резонаторе, а также трение газа о стенки стакана резонатора приводят к необратимому повышению температуры газа внутри резонатора и воспламенению топливной смеси.
Основными недостатками данного воспламенителя являются:
- предварительное смешение компонентов топлива в форкамере до воспламенения, что в случае применения кислородно-водородного топлива может привести к взрыву, так как известно, что водородно-кислородная смесь, заключенная в трубах, детонирует, и в таких условиях детонация имеет место в широком диапазоне концентрации смеси (Микулин Е.И. Криогенная техника. М.: Машиностроение, 1969 г., стр.126-128);
- горящая смесь газов при стехиометрическом соотношении компонентов может привести к прогару резонатора и выходу из строя воспламенителя, что снижает надежность его работы.
Задачей изобретения является устранение указанных недостатков и создание воспламенителя, обеспечивающего более высокую надежность при его работе.
Поставленная задача достигается тем, что в предложенном воспламенителе, содержащем реверберационную камеру, сопло подачи рабочего газа, дополнительную камеру смешения с помещенным в ее полости резонатором, согласно изобретению на одной оси с дополнительной камерой смешения установлена камера сгорания, при этом полости камер соединены дросселирующим отверстием, источник горючего соединен каналами с полостями дополнительной камеры смешения и камеры сгорания, а источник окислителя - с полостью камеры сгорания и дросселирующим отверстием.
Для обеспечения поступления в дополнительную камеру смешения необходимого суммарного расхода компонентов топлива (3-5%), рассчитанного по количеству выделяемой тепловой энергии раскаленной поверхностью резонатора, достаточной для его надежного воспламенения, диаметры каналов, соединяющих источник горючего с дополнительной камерой смешения и камерой сгорания, и диаметры каналов, соединяющих источник окислителя с дросселирующим отверстием и камерой сгорания, выполнены в соотношении
d1/D1=d2/D2=0,15-0,25,
где d1 - диаметр канала, соединяющего источник горючего с дополнительной камерой смешения;
D1 - диаметр канала, соединяющего источник горючего с камерой сгорания;
d2 - диаметр канала, соединяющего источник окислителя с дросселирующим отверстием;
D2 - диаметр канала, соединяющего источник окислителя с камерой сгорания.
Увеличение расхода топлива в дополнительной камере смешения более 5% суммарного расхода приводит к снижению эффективности теплового потока от резонатора к топливной смеси в дополнительной камере смешения и ухудшает условия воспламенения, а его снижение менее 3% - к уменьшению поступающего количества тепла от воспламенившейся смеси в дополнительной камере смешения в камеру сгорания и ухудшению поджига в ней основного топлива.
Сущность изобретения иллюстрируется чертежом, где показан продольный разрез воспламенителя.
Основными элементами воспламенителя являются:
1 - реверберационная камера;
2 - сопло;
3 - резонатор;
4 - дополнительная камера смешения;
5 - корпус;
6 - дросселирующее отверстие;
7 - камера сгорания;
8 - штуцер подвода горючего;
9 - штуцер подвода окислителя;
10 - отверстия выброса в атмосферу рабочего газа;
11 - канал подачи горючего в камеру сгорания (D1);
12 - канал подачи горючего в дополнительную камеру (d1);
13 - канал подачи окислителя в камеру сгорания (D2);
14 - канал подачи окислителя в дросселирующее отверстие (d2);
15 - конусный канал.
Реверберационная камера 1 соединена соосно с соплом 2. В конце конусного канала 15 выполнен резонатор 3, концевая часть которого расположена в дополнительной камере смешения 4. В корпусе 5 дополнительная камера смешения 4 соосно через дросселирующее отверстие 6 соединена с камерой сгорания 7. Полости дополнительной камеры смешения и камеры сгорания соединены каналами 11 - 14 с источниками подачи горючего и окислителя.
Для обеспечения расчетных расходов компонентов топлива диаметры d1 и D1 каналов 12 и 11, соединяющих соответственно источник горючего с дополнительной камерой смешения и камерой сгорания, и диаметры d2 и D2 каналов 14 и 13, соединяющих соответственно источник окислителя с дросселирующим отверстием и камерой сгорания, выполнены в соотношении d1/D1=d2/D2=0,15-0,25. В корпусе реверберационной камеры 1 выполнены отверстия 10 для выброса рабочего газа.
Предложенный воспламенитель работает следующим образом. Рабочий газ - сжатый воздух или другой нейтральный газ (например, гелий) разгоняется в сопле 2, сверхзвуковой струей в реверберационной камере 1 взаимодействует с резонатором 3 и выбрасывается через боковые отверстия 10 в атмосферу. При определенном расстоянии между соплом 2 и входной частью конусного канала 15 в последнем возбуждаются высокочастотные колебания и перед резонатором 3 возникают ударные волны.
Кинетическая энергия газа в резонаторе 3 и трение газа о стенки конусного канала 15 переходят в тепло, нагревая концевую часть резонатора 3 до температуры воспламенения топливной смеси. Горючее (например, газообразный водород) подается через штуцер 8, окислитель (например, газообразный кислород) подается через штуцер 9. Расход компонентов топлива, подаваемый через каналы 11, 12 меньшего диаметра в дополнительную камеру смешения и дросселирующее отверстие, составляет 3-5% суммарного расхода топлива, рассчитанного по количеству выделяемой тепловой энергии раскаленной поверхностью резонатора, достаточной для его надежного воспламенения. Горючее, омывая резонатор 3 и нагреваясь, обеспечивает оптимальные условия по охлаждению резонатора 3. Окислитель, поступая в дросселирующее отверстие 6, соединяющее дополнительную камеру смешения 4 и камеру сгорания 7, смешивается с горючим в непосредственной близости от концевого торца резонатора 3. Нагретая до температуры самовоспламенения топливная смесь, воспламеняется в дополнительной камере смешения 4 и затем воспламеняет топливо в камере сгорания 7. В процессе работы воспламенителя горючее, поступающее в дополнительную камеру смешения 4, продолжает охлаждать резонатор 3. На определенном режиме работы воспламенителя отключается подача рабочего газа в сопло 2. Таким образом прекращается принудительный разогрев резонатора 3 и тем самым снижаются тепловые нагрузки на него при дальнейшей работе воспламенителя.
Авторами и заявителем проведен комплекс экспериментальных исследований с устройством, реализующим данный принцип работы. Полученные результаты подтвердили правильность заложенных технических решений и выбранных критериев.
Использование предложенного технического решения позволит создать воспламенители на основе газодинамического нагрева для двигателей различного назначения с повышенной эксплуатационной надежностью и улучшенными габаритно-массовыми характеристиками системы воспламенения.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ГАЗОДИНАМИЧЕСКОГО ВОСПЛАМЕНЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2175743C2 |
ГАЗОДИНАМИЧЕСКИЙ ВОСПЛАМЕНИТЕЛЬ ОСНОВНОЙ ТОПЛИВНОЙ СМЕСИ В ПРОТОЧНОМ ТРАКТЕ | 2014 |
|
RU2555601C1 |
СПОСОБ ГАЗОДИНАМИЧЕСКОГО ВОСПЛАМЕНЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2005 |
|
RU2319076C2 |
ГАЗОДИНАМИЧЕСКИЙ ВОСПЛАМЕНИТЕЛЬ | 1990 |
|
RU2057996C1 |
Устройство термоабразивной обработки поверхностей изделий и материалов | 2023 |
|
RU2806459C1 |
ГАЗОДИНАМИЧЕСКИЙ ВОСПЛАМЕНИТЕЛЬ | 1993 |
|
RU2079055C1 |
Газодинамический воспламенитель | 1985 |
|
SU1255818A1 |
ГАЗОДИНАМИЧЕСКИЙ ВОСПЛАМЕНИТЕЛЬ | 2011 |
|
RU2485402C1 |
ГОРЕЛКА ДЛЯ РЕЗКИ МЕТАЛЛИЧЕСКОГО МАТЕРИАЛА И ОБРАБОТКИ ПОВЕРХНОСТИ | 2002 |
|
RU2201319C1 |
ВЫСТРЕЛ К ГРАНАТОМЕТУ | 2021 |
|
RU2765745C1 |
Изобретение относится к теплотехнике, в частности к средствам поджига двухкомпонентных, в том числе и двухфазных, смесей, и может быть использовано при создании различных тепловых машин, в том числе и жидкостных ракетных двигателей. Воспламенитель содержит реверберационную камеру, на входе в которую установлено сопло для подачи газа для нагрева резонатора, резонатор, дополнительную камеру смешения, камеру сгорания, установленную последовательно и объединенную в одном корпусе с дополнительной камерой смешения, каналы для подвода компонентов со штуцерами горючего и окислителя, резонатор помещен в дополнительную камеру смешения и между дополнительной камерой смешения и камерой сгорания выполнено дросселирующее отверстие, а полости дополнительной камеры смешения и камеры сгорания соединены каналами с источниками подачи горючего и окислителя. Наиболее оптимальные условия для воспламенения топлива и охлаждения резонатора достигаются в том случае, когда диаметры каналов, соединяющих источник горючего с дополнительной камерой смешения и камерой сгорания, и диаметры каналов, соединяющих источник окислителя с дросселирующим отверстием и камерой сгорания, выполнены в соотношении d1/D1=d2/D2=0,15-0,25, где d1 - диаметр канала, соединяющего источник горючего с дополнительной камерой смешения; D1 - диаметр канала, соединяющего источник горючего с камерой сгорания; d2 - диаметр канала, соединяющего источник окислителя с дросселирующим отверстием; D2 - диаметр канала, соединяющего источник окислителя с камерой сгорания. Изобретение позволяет создать воспламенитель на основе газодинамического нагрева с более высокой степенью надежности при его работе. 1 з.п. ф-лы, 1 ил.
d1/D1=d2/D2=15-0,25,
где d1 - диаметр канала, соединяющего источник горючего с дополнительной камерой смешения;
D1 - диаметр канала, соединяющего источник горючего с камерой сгорания;
d2 - диаметр канала, соединяющего источник окислителя с дросселирующим отверстием;
D2 - диаметр канала, соединяющего источник окислителя с камерой сгорания.
US 5109669 A, 23.09.1985 | |||
Воспламенитель | 1984 |
|
SU1180650A2 |
Воспламенитель | 1982 |
|
SU1067301A1 |
ГАЗОДИНАМИЧЕСКИЙ ВОСПЛАМЕНИТЕЛЬ | 1993 |
|
RU2079055C1 |
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор | 1923 |
|
SU2005A1 |
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор | 1923 |
|
SU2005A1 |
Газодинамический воспламенитель | 1985 |
|
SU1255818A1 |
Авторы
Даты
2008-09-27—Публикация
2007-02-19—Подача