Изобретение относится к электронной технике и может быть использовано при изготовлении многокристальных модулей.
Известен многокристальный модуль (патент США № 5648648, МПК H01L 23/02), содержащий штабель полупроводниковых устройств, каждое из которых включает основание из полупроводникового материала прямоугольной формы и металлизированные поверхности с конфигурацией проводников, при этом полупроводниковые устройства соединены между собой смежными поверхностями с применением L-образных и Т-образных контактов.
Однако недостатком этого многокристального модуля является то, что конструкция элементов модуля выполнена из полимерных материалов, что снижает стойкость многокристального модуля к воздействию ионизирующего излучения.
Известен также многокристальный модуль, выбранный в качестве прототипа (патент США № 7126209, МПК H01L 23/495), включающий набор полупроводниковых устройств, связанных между собой матрицами шариковых выводов. Каждое полупроводниковое устройство включает кристаллодержатель с внутренними и внешними контактными площадками, при этом к внутренними контактными площадками присоединены интегральные схемы. Интегральные схемы электрически связаны с выводами с помощью проволочных соединений. Зоны присоединения заполнены компаундной смесью.
Недостатком данного технического решения является то, что зоны коммутации смежных кристаллодержателей не обеспечены необходимой степенью герметичности, что снижает надежность многокристальный модулей в условиях воздействия механических и климатических факторов, а применение полимерных веществ в данных конструкциях снижает их стойкость к воздействию ионизирующих излучений.
Задачей, на решение которой направлено предлагаемое изобретение, является обеспечение герметичности и радиационной стойкости конструкции модуля в условиях воздействия механических и климатических факторов.
Для решения поставленной задачи многокристальный модуль выполнен в виде пакета кристаллодержателей, в каждом из которых на металлизированной микроплате закреплена интегральная схема, электрически связанная с внешними выводами проволочными соединениями и микропроводниками металлизации микроплат, причем кристаллодержатель выполнен в виде установленных друг на друга трех металлизированных микроплат, изготовленных из материала с высокими теплопередающими свойствами, нижняя микроплата выполнена сплошной, средняя и верхняя микроплаты выполнены в виде рамок, имеющих центральные прямоугольные отверстия меньшего и большего размеров соответственно, при этом нижняя, средняя и верхняя микроплаты образуют глухую ступенчатую полость, на выступе которой размещена контактная площадка, электрически связанная с интегральной схемой, закрепленной на нижней микроплате, а в качестве внешних выводов использованы каналы, образованные соосными сквозными отверстиями, выполненными по периферии нижней, средней и верхней микроплат и герметизированные припоем.
В частном варианте в качестве материала микроплат использован нитрид алюминия.
В другом частном варианте кристаллодержатели, а также нижняя, средняя и верхняя микроплаты соединены диффузионной сваркой.
В другом частном варианте контактная площадка электрически связана с интегральной схемой с помощью проволочных соединений.
В другом частном варианте на верхний кристаллодержатель установлена крышка.
На фиг.1 схематично представлен разрез многокристального модуля.
На фиг.2 представлен многокристальный модуль, вид снизу.
На фиг 3 представлен многокристальный модуль, разрез по двум смежным поверхностям кристаллодержателей.
Многокристальный модуль представляет собой пакет кристаллодержателей 1, соединенных между собой диффузионной сваркой, каждый кристаллодержатель состоит из трех микроплат: нижней 2, средней 3 и верхней 4. Каждая микроплата в кристаллодержателе выполнена с металлизацией поверхностей, конфигурация проводников которой соответствует требованиям принципиальной электрической схемы многокристального модуля. Нижняя плата выполнена сплошной. Средняя и верхняя микроплаты выполнены в виде металлизированных рамок, имеющих центральные прямоугольные отверстия соответственно большего и меньшего размеров. В сборе нижняя, средняя и верхняя микроплата образуют глухую ступенчатую полость 5. На нижней микроплате размещена интегральная схема 6. На выступе, образованном средней и верхней микроплатами, расположена контактная площадка 7. Электрическая связь между контактами интегральной схемы и контактной площадкой осуществлена с помощью металлических проводников 8. По периферии нижней, средней и верхней микроплат выполнены сквозные соосные отверстия 9, которые образуют каналы 10, заполненные припоем. Эти каналы обеспечивают коммутационные связи между основными элементами модуля, а также теплоотвод от кристаллов интегральных схем. Количество сквозных отверстий, выполненных по периферии микроплат, соответствует количеству внешних выводов многокристального модуля и количеству выводов, обеспечивающих межуровневые переходы. На верхнем кристаллодержателе установлена крышка 11. Она прикреплена к кристаллодержателю диффузионной сваркой, что обеспечивает герметизацию зоны монтажа интегральной схемы верхнего кристаллодержателя.
Предложенный многокристальный модуль характеризуется повышенной герметичностью, надежностью, высокой радиационной стойкостью конструкции в условиях воздействия механических и климатических факторов. Кроме того, выполнение микроплат из нитрида алюминия, обладающего высокой теплопроводностью, позволяет увеличить эффективность теплопередачи от зоны расположения микросхем в окружающую среду.
название | год | авторы | номер документа |
---|---|---|---|
МНОГОКРИСТАЛЬНЫЙ МОДУЛЬ | 2010 |
|
RU2461911C2 |
МНОГОКРИСТАЛЬНЫЙ МОДУЛЬ | 2011 |
|
RU2463684C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ | 2012 |
|
RU2511054C2 |
ИНТЕГРАЛЬНАЯ МИКРОСХЕМА | 1991 |
|
RU2024110C1 |
ТРЕХМЕРНЫЙ ЭЛЕКТРОННЫЙ МОДУЛЬ | 1997 |
|
RU2133523C1 |
ТРЕХМЕРНОЕ ЭЛЕКТРОННОЕ УСТРОЙСТВО | 2011 |
|
RU2488913C1 |
БОЛЬШАЯ ИНТЕГРАЛЬНАЯ СХЕМА | 1990 |
|
RU2068602C1 |
Многокристальный модуль | 2019 |
|
RU2702705C1 |
ОРГАНИЧЕСКИЙ КРИСТАЛЛОДЕРЖАТЕЛЬ ДЛЯ ИНТЕГРАЛЬНЫХ СХЕМ С ПРОВОЛОЧНЫМИ СОЕДИНЕНИЯМИ | 1996 |
|
RU2146067C1 |
БОЛЬШАЯ ИНТЕГРАЛЬНАЯ СХЕМА (ЕЕ ВАРИАНТЫ) | 1991 |
|
RU2006990C1 |
Изобретение относится к электронной технике и может быть использовано при изготовлении многокристальных модулей. Техническим результатом изобретения является обеспечение герметичности и радиационной стойкости конструкции модуля в условиях воздействия механических и климатических факторов. Сущность изобретения: многокристальный модуль выполнен в виде пакета кристаллодержателей, в каждом из которых на металлизированной микроплате закреплена интегральная схема, электрически связанная с внешними выводами проволочными соединениями и микропроводниками металлизации микроплат. Кристаллодержатель выполнен в виде, установленных друг на друга трех металлизированных микроплат, изготовленных из материала с высокими теплопередающими свойствами. Нижняя микроплата выполнена сплошной, средняя и верхняя микроплаты выполнены в виде рамок, имеющих центральные прямоугольные отверстия меньшего и большего размеров соответственно. Нижняя, средняя и верхняя микроплаты образуют глухую ступенчатую полость, на выступе которой размещена контактная площадка, электрически связанная с интегральной схемой, закрепленной на нижней микроплате. В качестве внешних выводов использованы каналы, образованные соосными сквозными отверстиями, выполненными по периферии нижней, средней и верхней микроплат и герметизированные припоем. 4 з.п. ф-лы, 3 ил.
US 7126209 В2, 24.10.2006 | |||
ТРЕХМЕРНЫЙ ЭЛЕКТРОННЫЙ МОДУЛЬ | 1997 |
|
RU2133523C1 |
МНОГОКРИСТАЛЬНЫЙ МОДУЛЬ | 1999 |
|
RU2140688C1 |
Неотвинчивающийся шуруп | 1925 |
|
SU2052A1 |
Способ приготовления мыла | 1923 |
|
SU2004A1 |
Пломбировальные щипцы | 1923 |
|
SU2006A1 |
Авторы
Даты
2008-10-10—Публикация
2007-01-25—Подача