МНОГОКРИСТАЛЬНЫЙ МОДУЛЬ Российский патент 2012 года по МПК H01L25/04 

Описание патента на изобретение RU2461911C2

Изобретение относится к электронной технике и может быть использовано при изготовлении многокристальных модулей.

Известен многокристальный модуль (1), включающий набор металлизированных плат с интегральными схемами и проводящими рисунками, электрически связанными проволочными соединениями, при этом проводящие микропроводники плат соединены между собой вертикальными сквозными каналами, расположенными по периферии модуля.

Наиболее близким к заявленному изобретению по технической сущности является многокристальный модуль (2), выполненный в виде пакета кристаллодержателей, в каждом из которых на металлизированных микроплатах закреплены интегральные схемы, электрически связанные с внешними выводами проволочными соединениями и микропроводниками металлизации микроплат.

В качестве внешних выводов использованы каналы, образованные соосными сквозными отверстиями, выполненными по периферии нижней, средней и верхней микроплат и заполненными припоем.

Недостатком вышеуказанных модулей является неравномерное распределение тепла в отдельных зонах многокристальных модулей, связанное с электрическими и тепловыми характеристиками микропроводников металлизированных плат разной длины, связывающих вертикальные проводящие каналы с контактными площадками микроплат.

Задача, на решение которой направлено предлагаемое изобретение, является устранение данных недостатков путем выравнивания электрических и тепловых характеристик микропроводников, что в конечном счете ведет к повышению качества многокристальных модулей.

Для решения поставленной задачи многокристальный модуль выполнен в виде пакета кристаллодержателей, каждый из которых содержит установленные друг на друга металлизированные микроплаты, нижняя в виде сплошной подложки, средняя и верхняя в виде рамок, на которых размещены интегральная схема и контактные площадки, электрически связанные проволочными соединениями между собой и микропроводниками металлизации микроплат с внешними выводами, в качестве которых использованы каналы, образованные соосными сквозными отверстиями и расположенные по периферии микроплат, отличается тем, что подложка и рамки микроплат в кристаллодержателе выполнены соответственно прямоугольной и овальной формы, а каналы размещены с каждой стороны модуля с равным шагом по дуге таким образом, что центры каналов и контактных площадок микроплат, имеющие одинаковые порядковые номера, соединены проводниками равной длины.

Изобретение поясняется чертежами, где:

на фиг.1 - многокристальный модуль, общий вид;

на фиг.2 - многокристальный модуль, вид сверху;

на фиг.3 - многокристальный модуль, сечение А-А;

на фиг.4 - многокристальный модуль, сечение Б-Б;

на фиг.5 - многокристальный модуль, сечение В-В.

Многокристальный модуль представляет собой пакет кристаллодержателей 1, соединенных между собой диффузионной сваркой. Каждый кристаллодержатель состоит из трех микроплат: подлложки 2, средней 3 и верхней 4.

Каждая микроплата в кристаллодержателе выполнена с металлизацией поверхностей в соответствии с требованиями принципиальной электрической схемы многокристального модуля.

Подложка 2 выполнена сплошной прямоугольной формы. Средняя и верхняя микроплаты выполнены в виде металлизированных рамок овальной формы, имеющих центральные отверстия, соответственно, большего и меньшего размеров. В сборе подложка, средняя и верхняя микроплаты образуют глухую ступенчатую полость 5, в которой размещена интегральная схема 6 и проволочные соединения 7, соединяющие контактные площадки интегральной схемы 8 и контактные площадки 9 микроплат 3.

По периферии подложки, средней и верхней микроплат выполнены сквозные соосные отверстия 10, расположенные по дуге с равным шагом (Т). Центры отверстий 10 находятся в точках пересечения вертикальных осей координатной сетки (порядковые номера 1”, 2”, 3” и т.д.), с дугами окружностей с радиусом R, проведенных из центров контактных площадок 9 микроплат соответствующего порядкового номера (1', 2', 3' и т.д.). При этом радиус R имеет одинаковую величину, соответствующую длинам микропроводников, соединяющих каналы 11 с контактными площадкам 9 (фиг.4).

Сквозные отверстия 10, образующие каналы 11, заполнены припоем. Эти каналы обеспечивают коммутационные связи между основными элементами модуля, при этом длина микропроводников 12, соединяющих контактные площадки микроплат 8 и проводящие каналы 11 является одинаковой. На верхнем кристаллодержателе установлена крышка 13. Она прикреплена к кристаллодержателю диффузионной сваркой, что обеспечивает герметизацию зоны монтажа интегральной схемы верхнего кристаллодержателя.

Кроме того, подложки 2, выполненные прямоугольной формы, и собранные в пакет с рамками, выступают своими углами 14 за габариты металлизированных рамок, увеличивая тем самым поверхность теплообмена корпуса модуля, что позволяет увеличить эффективность теплопередачи от зоны расположения микросхем в окружающую среду. Предложенный многокристальный модуль исключает нежелательные концентрации тепла в отдельных зонах конструкции модуля, обеспечивая тем самым надежность работы интегральных схем и изделия в целом.

Источники информации

1. Патент США №7652362, MПК H01L 23/02, 2010 г.

2. Патент РФ №2335822, MПК H01L 23/02, 2008 г.

Похожие патенты RU2461911C2

название год авторы номер документа
МНОГОКРИСТАЛЬНЫЙ МОДУЛЬ 2007
  • Серегин Вячеслав Сергеевич
  • Пилавова Лариса Владимировна
  • Василевич Анатолий Иванович
  • Троицкий Вячеслав Леонидович
  • Горьков Алексей Викторович
  • Гамкрелидзе Сергей Анатольевич
RU2335822C1
МНОГОКРИСТАЛЬНЫЙ МОДУЛЬ 2011
  • Горьков Алексей Викторович
  • Пилавова Лариса Владимировна
  • Серегин Вячеслав Сергеевич
  • Щеплевский Алексей Константинович
RU2463684C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ 2012
  • Сасов Юрий Дмитриевич
  • Усачев Вадим Александрович
  • Голов Николай Александрович
  • Кудрявцева Наталья Валерьевна
RU2511054C2
ОРГАНИЧЕСКИЙ КРИСТАЛЛОДЕРЖАТЕЛЬ ДЛЯ ИНТЕГРАЛЬНЫХ СХЕМ С ПРОВОЛОЧНЫМИ СОЕДИНЕНИЯМИ 1996
  • Ашвинкумар Чинупрасад Бхатт
  • Субаху Дхирубхай Десай
  • Томас Патрик Даффи
  • Джеффри Алан Найт
RU2146067C1
Многокристальный модуль 2019
  • Итальянцев Александр Георгиевич
  • Макеев Виктор Владимирович
  • Худченко Вячеслав Николаевич
  • Шишанкина Ольга Николаевна
RU2702705C1
ТРЕХМЕРНЫЙ ЭЛЕКТРОННЫЙ МОДУЛЬ 1997
RU2133523C1
СПОСОБ СБОРКИ ТРЕХМЕРНОГО ЭЛЕКТРОННОГО МОДУЛЯ 2012
  • Сасов Юрий Дмитриевич
  • Усачев Вадим Александрович
  • Голов Николай Александрович
  • Кудрявцева Наталья Валерьевна
RU2492549C1
ТРЕХМЕРНОЕ ЭЛЕКТРОННОЕ УСТРОЙСТВО 2011
  • Сасов Юрий Дмитриевич
  • Усачев Вадим Александрович
  • Голов Николай Александрович
  • Кудрявцева Наталья Валерьевна
RU2488913C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТРЕХМЕРНОГО МНОГОКРИСТАЛЬНОГО МИКРОМОДУЛЯ 2005
  • Блинов Геннадий Андреевич
  • Грушевский Александр Михайлович
  • Егоров Константин Владиленович
RU2299497C2
СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКОПЛЕНОЧНЫХ МНОГОУРОВНЕВЫХ ПЛАТ ДЛЯ МНОГОКРИСТАЛЬНЫХ МОДУЛЕЙ, ГИБРИДНЫХ ИНТЕГРАЛЬНЫХ СХЕМ И МИКРОСБОРОК 2011
  • Нетесин Николай Николаевич
  • Короткова Галина Петровна
  • Корзенев Геннадий Николаевич
  • Поволоцкий Сергей Николаевич
  • Карпова Маргарита Валерьевна
  • Королев Олег Валентинович
  • Баранов Роман Валентинович
  • Поволоцкая Галина Ювеналиевна
RU2459314C1

Иллюстрации к изобретению RU 2 461 911 C2

Реферат патента 2012 года МНОГОКРИСТАЛЬНЫЙ МОДУЛЬ

Использование: электронная техника, в частности использование при изготовлении многокристальных модулей. Сущность изобретения: многокристальный модуль выполнен в виде пакета кристаллодержателей, каждый из которых содержит установленные друг на друга металлизированные микроплаты, нижняя в виде сплошной подложки, средняя и верхняя в виде рамок, на которых размещены интегральная схема и контактные площадки, электрически связанные проволочными соединениями между собой и микропроводниками металлизации микроплат с внешними выводами, в качестве которых использованы каналы, образованные соосными сквозными отверстиями и расположенные по периферии микроплат, подложка и рамки микроплат в кристаллодержателях выполнены соответственно прямоугольной и овальной форм, а каналы размещены с каждой стороны модуля с равным шагом по дуге таким образом, что центры каналов и контактных площадок микроплат, имеющие одинаковые порядковые номера, соединены проводниками равной длины. Использование изобретения исключает нежелательные концентрации тепла в отдельных зонах конструкции модуля, обеспечивая тем самым надежность работы интегральных схем и изделия в целом. 5 ил.

Формула изобретения RU 2 461 911 C2

Многокристальный модуль, выполненный в виде пакета кристаллодержателей, каждый из которых содержит установленные друг на друга металлизированные микроплаты, нижняя в виде сплошной подложки, средняя и верхняя в виде рамок, на которых размещены интегральная схема и контактные площадки, электрически связанные проволочными соединениями между собой и микропроводниками металлизации микроплат с внешними выводами, в качестве которых использованы каналы, образованные соосными сквозными отверстиями и расположенные по периферии микроплат, отличающийся тем, что подложка и рамки микроплат в кристаллодержателях выполнены соответственно прямоугольной и овальной формы, а каналы размещены с каждой стороны модуля с равным шагом по дуге таким образом, что центры каналов и контактных площадок микроплат, имеющие одинаковые порядковые номера, соединены проводниками равной длины.

Документы, цитированные в отчете о поиске Патент 2012 года RU2461911C2

МНОГОКРИСТАЛЬНЫЙ МОДУЛЬ 2007
  • Серегин Вячеслав Сергеевич
  • Пилавова Лариса Владимировна
  • Василевич Анатолий Иванович
  • Троицкий Вячеслав Леонидович
  • Горьков Алексей Викторович
  • Гамкрелидзе Сергей Анатольевич
RU2335822C1
ТРЕХМЕРНЫЙ ЭЛЕКТРОННЫЙ МОДУЛЬ 1997
RU2133523C1
US 7652362 B2, 26.01.2010
Пресс для выдавливания из деревянных дисков заготовок для ниточных катушек 1923
  • Григорьев П.Н.
SU2007A1
Пломбировальные щипцы 1923
  • Громов И.С.
SU2006A1
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1

RU 2 461 911 C2

Авторы

Ветров Владимир Александрович

Серегин Вячеслав Сергеевич

Пилавова Лариса Владимировна

Горьков Алексей Викторович

Троицкий Вячеслав Леонидович

Даты

2012-09-20Публикация

2010-11-30Подача