СПОСОБ ПОДАВЛЕНИЯ РОСТА ОПУХОЛЕЙ Российский патент 2008 года по МПК A61N5/67 B82B1/00 A61K31/41 A61K33/30 A61K33/34 A61P35/00 

Описание патента на изобретение RU2339414C1

Настоящее изобретение относится к медицине, а именно к онкологии, и может быть использовано при лечении злокачественных опухолей.

Известен способ индукции гибели клеток in vitro путем введения в них наночастиц (НЧ) золота с последующим облучением лазерными импульсами (С.М.Pitsillides, Е.K.Joe, X.Wei, R.R.Anderson, and C.P.Lin, Selective Cell Targeting with Light-Absorbing Microparticles and Nanoparticles, Biophysical Journal, 84, 4023-4032, 2003; V.P.Zharov, Е.N.Galitovskaya, C.Johnson, and T.Kelly. Synergistic Enhancement of Selective Nanophotothermolysis with Gold Nanoclusters: Potential for Cancer Therapy, Lasers in Surgery and Medicine 37, 219-226, 2005; V.P.Zharov, К.Е.Mercer, Е.N.Galitovskaya, and М.S.Smeltzery. Photothermal Nanotherapeutics and Nanodiagnostics for Selective Killing of Bacteria Targeted with Gold Nanoparticles, Biophysical Journal, 90, 619-627, 2006). Однако эксперименты по эффективности НЧ золота in vitro не были подтверждены в экспериментах in vivo, которые ближе к клиническому применению.

Идея метода в экспериментах in vivo заключается в следующем. Животному вводятся внутривенно НЧ, обладающие интенсивным поглощением в красной или ближней инфракрасной области спектра (в области длин волн 0,6-1,2 мкм, в так называемом «терапевтическом окне прозрачности биоткани»). Затем опухоль облучается мощными лазерными импульсами с длиной волны в области интенсивного поглощения НЧ. Под действием каждого лазерного импульса происходят «микровзрывы» НЧ, приводящие к повреждению окружающих структур биоткани и последующей гибели опухолевых клеток. Эффективность воздействия определяется дозой введенных НЧ, плотностью энергии лазерного импульса и суммарной плотностью энергии. При прочих равных условиях большое значение имеет коэффициент поглощения введенных НЧ на длине волны облучения, поскольку от него зависит поглощаемая каждой частицей энергия лазерного импульса (энергия микровзрыва) и, следовательно, величина производимых им разрушений.

Наиболее близким к предлагаемому решению является способ подавления роста опухолей в эксперименте на животных (мыши) путем внутривенного введения НЧ углерода в дозе 30 мг/кг с последующим облучением опухоли лазерными импульсами в спектральной области поглощения НЧ с плотностью энергии в импульсе 3 Дж/см2 и суммарной плотностью энергии 180 Дж/см2 (B.Ya.Kogan, R.I.Yakubovskaya, A.A.Pankratov, T.N.Andreeva, L.D.Kvacheva, A.A.Titov, V.A.Puchnova, R.A.Feysulova, G.N.Vorozhtsov, Laser heating of sulphuretted carbon Danoparticles inhibits tumor growth. Technical Proc., NSTI Nanotech 2006, Boston, 2006, Vol.2, Chapter 1, p.71-74). Максимальные значения торможения роста опухоли (ТРО) для карциномы С-26 и саркомы S-37 достигали 70-75%.

Недостатком данного метода является его невысокая эффективность, т.к. при довольно высокой плотности энергии в импульсе (3 Дж/см2) и суммарной плотности энергии (180 Дж/см2) ТРО составляет лишь 70-75%.

Задачей настоящего изобретения является повышение эффективности данного метода, т.е. достижение таких же или более высоких значений ТРО при более низких плотностях энергии облучения. Поставленная задача решается путем внутривенного введения НЧ фталоцианинов с последующим облучением опухоли лазерными импульсами в области поглощения НЧ. Доза наночастиц выбирается не ниже 5 мг/кг веса (при дальнейшем снижении дозы существенно падает эффективность метода) и не выше максимально переносимой дозы (МПД). Плотность энергии импульса выбирается не ниже 0,1 Дж/см2 (при дальнейшем снижении существенно падает эффективность метода). Верхний предел плотности энергии импульса связан с возможностями применяющегося лазера. Суммарная плотность энергии ограничена сверху допустимой длительностью сеанса облучения, а снизу - величиной 10 Дж/см2 (при дальнейшем снижении существенно падает эффективность метода).

Исследования проводили на мышах с перевиваемыми солидными опухолями различного гистогенеза. В качестве термосенсибилизаторов использовали НЧ на основе различных фталоцианинов. НЧ вводили внутривенно в дозах от МПД (максимально переносимая доза) и ниже. Затем опухоль облучали импульсами лазера с модуляцией добротности на рубине. Плотность энергии в импульсе была не ниже 0,1 Дж/см2, суммарная плотность энергии - не ниже 10 Дж/см2. Оценку противоопухолевого эффекта осуществляли по торможению роста опухоли (ТРО, %), которое рассчитывали по формуле: ТРО (%)=[(РОконтроль-РОопыт)/РОконтроль]×100,

где РОконтроль - размер опухоли в контрольной группе; РОопыт - размер опухоли в опытной группе.

Предлагаемое изобретение иллюстрируется следующими примерами.

Пример 1. НЧ фталоцианина алюминия (AlPc) в качестве термосенсибилизатора.

Исследования проводили на мышах с карциномой С-26. Данные, характеризующие противоопухолевую эффективность метода с НЧ AlPc, представлены в таблице 1. Как видно из таблицы 1, облучение опухолевого узла импульсным лазерным излучением после предварительного введения термосенсибилизатора в дозах от 30 мг/кг (близкая к МПД) до 7,5 мг/кг приводило к торможению роста опухоли до 90% при значительно меньшей плотности энергии облучения, чем в прототипе. Введение НЧ фталоцианина алюминия в исследованных дозах без облучения, а также облучение без введения наночастиц не оказывали существенного влияния на рост опухоли (ТРО не превысило 15%).

Таблица 1
Противоопухолевая эффективность метода с наночастицами фталоцианина алюминия у мышей с карциномой С-26
№ грДоза AlPc, мг/кгПараметры облученияТРО в % на день после леченияПлотность энергии в импульсе, Дж/см2Суммарная плотность энергии, Дж/см27141300,12075512150,330908637,50,3306734430--103515--3-567,5--887-0,330515

Пример 2. НЧ фталоцианина меди (CuPc) в качестве термосенсибилизатора.

Исследования проводили на мышах с саркомой S-37. Данные, характеризующие противоопухолевую эффективность метода с НЧ CuPc, представлены в таблице 2.

Таблица 2
Противоопухолевая эффективность метода с наночастицами фталоцианина меди у мышей с саркомой S-37
№ грДоза CuPc, мг/кгПараметры облученияЧисло полных резорбций опухолевого узла, %ТРО в % на день после леченияПлотность энергии в импульсе, Дж/см3Суммарная плотность энергии, Дж/см28111300,660809989230--011183-0,6600-22

Как видно из таблицы 2, облучение опухолевого узла при существенно меньших по сравнению с прототипом плотностях энергии после введения НЧ CuPc в дозе 30 мг/кг оказывало выраженное терапевтическое действие - у 80% животных наблюдали полную регрессию опухолевого узла. У части животных (20%), у которых не удалось добиться полной регрессии опухоли, наблюдали ТРО на 99-89% (по данным на 8 и 11 сутки после лечения). Введение наночастиц фталоцианина меди в той же дозе без облучения, а также облучение без введения наночастиц не оказывали существенного влияния на рост опухоли (ТРО не превысило 18%).

Пример 3. НЧ кислоты октакарбоксифталоцианина кобальта (СоРс) в качестве термосенсибилизатора.

Исследования проводили на мышах с саркомой S-37. Данные, характеризующие противоопухолевую эффективность метода с НЧ СоРс, представлены в таблице 3. Как видно из данных, представленных в таблице 3, облучение опухолевого узла при существенно меньших по сравнению с прототипом плотностях энергии после введения НЧ СоРс в дозе всего 5 мг/кг (близкая к МПД) оказывало сравнимое с прототипом противоопухолевое действие, приводя к торможению роста опухоли на 65%. Введение НЧ фталоцианина кобальта в той же дозе без облучения, а также облучение без введения НЧ не оказывали существенного влияния на рост опухоли (ТРО не превысило 15%).

Таблица 3
Противоопухолевая эффективность метода с наночастицами кислоты октакарбоксифталоцианина кобальта у мышей с саркомой S-37
№ грДоза СоРс, мг/кгПараметры облученияТРО в % на день после леченияПлотность энергии в импульсе, Дж/см2Суммарная плотность энергии, Дж/см2750,660655--15-0,660-2

Пример 4. НЧ фталоцианина цинка (ZnPc) в качестве термосенсибилизатора.

Исследования проводили на мышах с саркомой S-37. Данные, характеризующие противоопухолевую эффективность метода с НЧ ZnPc, представлены в таблице 4.

Как видно из данных, представленных в таблице 4, облучение опухолевого узла при существенно меньших по сравнению с прототипом плотностях энергии после введения наночастиц ZnPc в дозе 30 мг/кг приводило к торможению роста опухоли до 100%. Введение НЧ фталоцианина цинка в той же дозе без облучения, а также облучение без введения наночастиц не оказывали существенного влияния на рост опухоли (ТРО не превысило 16%).

Таблица 4
Противоопухолевая эффективность метода с наночастицами фталоцианина цинка у мышей с саркомой S-37
№ грДом ZnPc, мг/кгПараметры облученияТРО в % на день после леченияПлотность энергии в импульсе, Дж/см2Суммарная плотность энергии, Дж/см28151300,66010088230--10163-0,6605-3

Приведенные примеры показывают, что импульсное лазерное облучение опухолей после внутривенного введения НЧ фталоцианинов приводит к более эффективному торможению роста опухоли или даже полному излечению при более низких дозах препарата и более низких плотностях энергии облучения по сравнению с использованием НЧ углерода. Таким образом, предложен способ торможения роста опухолей путем внутривенного введения наночастиц фталоцианинов с последующим облучением опухоли лазерными импульсами с длиной волны в области интенсивного поглощения наночастиц, обладающий преимуществами перед известным аналогичным методом с использованием наночастиц углерода. При меньших дозах введенных НЧ и меньших плотностях энергии облучения достигается лучший терапевтический эффект вплоть до полного излечения.

Похожие патенты RU2339414C1

название год авторы номер документа
СПОСОБ ПОДАВЛЕНИЯ РОСТА ОПУХОЛЕЙ 2008
  • Коган Борис Яковлевич
  • Андреева Татьяна Николаевна
  • Бутенин Александр Владимирович
  • Венедиктова Юлия Борисовна
  • Ворожцов Георгий Николаевич
  • Калия Олег Леонидович
  • Лужков Юрий Михайлович
  • Лукьянец Евгений Антонович
  • Негримовский Владимир Михайлович
  • Панкратов Андрей Александрович
  • Пучнова Виола Александровна
  • Фейзулова Райся Курбан-Галиевна
  • Чиссов Валерий Иванович
  • Якубовская Раиса Ивановна
RU2383370C1
СПОСОБ ПОЛУЧЕНИЯ ЛЕКАРСТВЕННОГО ПРЕПАРАТА И ЛЕКАРСТВЕННЫЙ ПРЕПАРАТ 2015
  • Хромов Аркадий Валентинович
  • Фейзулова Райся Курбан Галиевна
  • Коган Борис Яковлевич
  • Якубовская Раиса Ивановна
  • Панкратов Андрей Александрович
RU2613106C2
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2012
  • Дудкин Семен Валентинович
  • Игнатова Анастасия Александровна
  • Кобзева Елена Сергеевна
  • Лужков Юрий Михайлович
  • Лукъянец Евгений Антонович
  • Макарова Елена Александровна
  • Морозова Наталья Борисовна
  • Плютинская Анна Дмитриевна
  • Феофанов Алексей Валерьевич
  • Чиссов Валерий Иванович
  • Якубовская Раиса Ивановна
RU2479585C1
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2013
  • Койфман Оскар Иосифович
  • Лукьянец Евгений Антонович
  • Морозова Наталья Борисовна
  • Плотникова Екатерина Александровна
  • Пономарёв Гелий Васильевич
  • Соловьёва Людмила Ивановна
  • Страховская Марина Глебовна
  • Якубовская Раиса Ивановна
RU2536966C1
СПОСОБ ПОДАВЛЕНИЯ РОСТА ОПУХОЛЕЙ 2007
  • Бутенин Александр Владимирович
  • Ворожцов Георгий Николаевич
  • Золотавкина Юлия Борисовна
  • Калия Олег Леонидович
  • Коган Борис Яковлевич
  • Лужков Юрий Михайлович
  • Панкратов Андрей Александрович
  • Чиссов Валерий Иванович
  • Якубовская Раиса Ивановна
RU2376999C2
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2013
  • Макарова Елена Александровна
  • Якубовская Раиса Ивановна
  • Ворожцов Георгий Николаевич
  • Ластовой Антон Павлович
  • Лукьянец Евгений Антонович
  • Морозова Наталья Борисовна
  • Плотникова Екатерина Александровна
RU2549953C2
ФОТОСЕНСИБИЛИЗАТОР ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2013
  • Якубовская Раиса Ивановна
  • Соловьёва Людмила Ивановна
  • Койфман Оскар Иосифович
  • Пономарёв Гелий Васильевич
  • Ластовой Антон Павлович
  • Лукьянец Евгений Антонович
  • Морозова Наталья Борисовна
  • Плотникова Екатерина Александровна
RU2548726C2
ПРЕПАРАТ ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ И СПОСОБ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ РАКА С ЕГО ИСПОЛЬЗОВАНИЕМ 2012
  • Чиссов Валерий Иванович
  • Якубовская Раиса Ивановна
  • Миронов Андрей Федорович
  • Грин Михаил Александрович
  • Плотникова Екатерина Александровна
  • Морозова Наталья Борисовна
  • Цыганков Анатолий Анатольевич
RU2521327C1
СПОСОБ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ БОЛЬНЫХ ЗЛОКАЧЕСТВЕННЫМИ ОПУХОЛЯМИ 1999
  • Соколов В.В.
  • Филоненко Е.В.
  • Сухин Д.Г.
RU2161053C1
ФОТОСЕНСИБИЛИЗАТОРЫ ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 2005
  • Ворожцов Георгий Николаевич
  • Кармакова Татьяна Анатольевна
  • Лужков Юрий Михайлович
  • Лукьянец Евгений Антонович
  • Морозова Наталья Борисовна
  • Негримовский Владимир Михайлович
  • Панкратов Андрей Александрович
  • Плютинская Анна Дмитриевна
  • Чиссов Валерий Иванович
  • Южакова Ольга Алексеевна
  • Якубовская Раиса Ивановна
RU2282646C1

Реферат патента 2008 года СПОСОБ ПОДАВЛЕНИЯ РОСТА ОПУХОЛЕЙ

Изобретение относится к медицине, а именно к онкологии, и может быть использовано при лечении злокачественных опухолей. Сущность заявляемого способа заключается в том, что внутривенно вводят наночастицы фталоцианинов в дозе не ниже 5 мг/кг веса и не выше максимально переносимой дозы с последующим облучением опухоли лазерными импульсами с длиной волны в области интенсивного поглощения наночастиц при плотности энергии в импульсе не ниже 0,1 Дж/см2 и суммарной плотности энергии не ниже 10 Дж/см2. Использование наночастиц фталоцианинов в указанных условиях позволяет повысить эффективность лечения злокачественных опухолей по сравнению с применявшимися ранее наночастицами углерода благодаря более высокому коэффициенту поглощения наночастиц фталоцианинов. 4 табл.

Формула изобретения RU 2 339 414 C1

Способ подавления роста опухолей путем внутривенного введения наночастиц с последующим облучением опухоли лазерными импульсами с длиной волны в области интенсивного поглощения наночастиц, отличающийся тем, что для внутривенного введения используют наночастицы фталоцианинов в дозе не ниже 5 мг/кг веса и не выше максимально переносимой дозы при плотности энергии в импульсе не ниже 0,1 Дж/см2 и суммарной плотности энергии не ниже 10 Дж/см2.

Документы, цитированные в отчете о поиске Патент 2008 года RU2339414C1

KOGAN B.Ya
et al
Пломбировальные щипцы 1923
  • Громов И.С.
SU2006A1
СУЛЬФОЗАМЕЩЕННЫЕ ФТАЛОЦИАНИНЫ КАК ФОТОСЕНСИБИЛИЗАТОРЫ ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ 1999
  • Ворожцов Г.Н.
  • Деркачева В.М.
  • Казачкина Н.И.
  • Лукьянец Е.А.
  • Феофанов А.В.
  • Фомина Г.И.
  • Чиссов В.И.
  • Якубовская Р.И.
RU2183635C2
ПРЕПАРАТ ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ ЗЛОКАЧЕСТВЕННЫХ НОВООБРАЗОВАНИЙ 1996
  • Торшина Н.Л.
  • Харнас С.С.
  • Лужков Ю.М.
  • Ворожцов Г.Н.
  • Волкова А.И.
  • Посыпанова А.М.
  • Лощенов В.Б.
  • Стратонников А.А.
  • Меерович Г.А.
RU2145221C1
СПОСОБ ФОТОДИНАМИЧЕСКОГО ВОЗДЕЙСТВИЯ НА ВИРУСЫ ИЛИ КЛЕТКИ 2002
  • Мак Артур Афанасьевич
  • Киселев Олег Иванович
  • Данилов Олег Борисович
  • Пиотровский Левон Борисович
  • Белоусова Инна Михайловна
  • Белоусов Владилен Петрович
  • Зарубаев Владимир Викторович
  • Муравьева Татьяна Дмитриевна
  • Пономарев Андрей Николаевич
RU2291700C2
Топчак-трактор для канатной вспашки 1923
  • Берман С.Л.
SU2002A1
US 7223600, 29.05.2007
US 6699724, 02.03.2004
МИРОНОВ А.Ф
Фотодинамическая терапия - новый эффективный метод

RU 2 339 414 C1

Авторы

Коган Борис Яковлевич

Бутенин Александр Владимирович

Ворожцов Георгий Николаевич

Золотавкина Юлия Борисовна

Лукьянец Евгений Антонович

Негримовский Владимир Михайлович

Панкратов Андрей Александрович

Пучнова Виолла Александровна

Фейзулова Райся Курбан-Галиевна

Чиссов Валерий Иванович

Якубовская Раиса Ивановна

Даты

2008-11-27Публикация

2007-03-27Подача