Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении на непрерывных широкополосных станах штрипсов для электросварных прямошовных насосно-компрессорных и обсадных труб.
Для производства насосно-компрессорных и обсадных труб необходимы штрипсы (горячекатаные полосы) толщиной 3,5-10,0 мм, шириной 950-1835 мм из низколегированной стали, обладающие следующим комплексом механических свойств (табл.1):
Механические свойства и свариваемость штрипсов (ТС 105-496)
Примечание: ось образцов совпадает с направлением прокатки.
Известен способ производства стальных листов, включающий выплавку и непрерывную разливку в слябы низколегированной стали, содержащей, мас. %:
Отлитые слябы нагревают до температуры 1250°С и прокатывают с суммарным обжатием не менее 75%. Прокатанные листы подвергают закалке из аустенитной области и высокотемпературному отпуску [1].
Недостатки известного способа состоят в том, что полосы после прокатки имеют низкие и неравномерные механические свойства. Это делает невозможным их применение для изготовления насосно-компрессорных и обсадных труб. Кроме того, необходимость проведения термического улучшения (закалки и отпуска) полос после прокатки усложняет и удорожает производство.
Известен также способ производства листовой низколегированной стали, включающий отливку слябов следующего химического состава, мас.%:
Слябы нагревают до температуры 950-1050°С и прокатывают при температуре выше точки Аr3 с суммарным обжатием 50-70%. Прокатанные листы охлаждают на воздухе [2].
При таком способе производства листы имеют недостаточную и неравномерную прочность и пластичность, недостаточную свариваемость и непригодны для изготовления насосно-компрессорных и обсадных труб.
Наиболее близким аналогом к предлагаемому изобретению является способ производства штрипсов из низколегированной стали, включающий нагрев слябов, прокатку в штрипсы с регламентированной температурой конца прокатки и охлаждение водой до температуры смотки, причем нагрев слябов производят до температуры 1220-1280°С, температуру конца прокатки поддерживают в диапазоне 820-880°С, а температуру смотки устанавливают в зависимости от содержания углерода в стали. Кроме того, низколегированная сталь имеет следующий химический состав, мас.%:
Недостатки известного способа состоят в том, что штрипсы имеют нестабильные механические свойства, которые зависят от концентрации углерода в стали и толщины полосы, определяющей скорость их охлаждения водой. Кроме того, полосы характеризуются недостаточной свариваемостью: при испытаниях образцов на разрыв их разрушение происходит по сварному шву. Все это приводит к снижению выхода годного.
Техническая задача, решаемая изобретением, состоит в повышении стабильности механических свойств и выхода годного.
Для решения поставленной технической задачи в известном способе производства штрипса из низколегированной стали, содержащей углерод, кремний, марганец, алюминий, хром, медь, серу, фосфор, азот и железо, включающем нагрев сляба, черновую и многопроходную чистовую прокатку до заданной толщины с температурой конца прокатки не ниже 820°С, охлаждение водой до температуры смотки, согласно предложению сляб выполнен из стали, содержащей, мас.%:
при этом многопроходную чистовую прокатку ведут в диапазоне температур от 960÷1050°С до 820-890°С.
Кроме того, при содержании углерода в стали 0,22-0,24% штрипсы толщиной 3,5-5,0 мм охлаждают водой до температуры смотки 600-650°С, а при толщине более 5,0 мм - до температуры смотки 580-640°С, а при содержании углерода в стали более 0,24% штрипсы толщиной 3,5-5,0 мм охлаждают водой до температуры смотки 610-660°С, а при толщине более 5,0 мм - до температуры смотки 600-650°С.
Сущность изобретения состоит в следующем. Химический состав стали совместно с температурными режимами горячей прокатки штрипсов определяют уровень и стабильность их механических свойств и, как следствие, выход годного. При изменении концентрации углерода в стали и толщины штрипсов, определяющей условия их охлаждения водой, изменяются параметры микроструктуры и механические свойства.
Сталь предложенного химического состава наименее чувствительна по микроструктуре к колебаниям температуры в интервале проведения чистовой прокатки (от 960-1050 до температуры не ниже 820°С), что стабилизирует механические свойства штрипсов. Изменение температуры смотки штрипсов в зависимости от конкретной концентрации углерода в стали и толщины штрипсов компенсирует влияние этих параметров на формирование конечной микроструктуры, чем обеспечивается дополнительная стабилизация механических свойств штрипсов (с различным содержанием углерода и с различной толщиной) и повышение выхода годного.
Углерод в низколегированной стали предложенного состава определяет прочностные свойства горячекатаных штрипсов. Снижение содержания углерода менее 0,22% приводит к падению их прочностных свойств ниже допустимого уровня. Увеличение содержания углерода более 0,28% ухудшает пластические свойства штрипсов и их свариваемость.
При содержании кремния менее 0,15% ухудшается раскисленность стали, снижаются прочностные свойства полос. Увеличение содержания кремния более 0,35% приводит к возрастанию количества силикатных включений, снижает равномерность механических свойств штрипсов, пластичность и свариваемость.
Снижение содержания марганца менее 1,0% увеличивает окисленность стали, ухудшает свариваемость полос. Повышение содержания марганца более 1,4% увеличивает предел текучести σт, неравномерность механических свойств, что, в свою очередь, ведет к снижению выхода годного.
Алюминий раскисляет и модифицирует сталь. Связывая избыточный примесный азот в нитриды, подавляет его негативное воздействие на свойства штрипсов. При содержании алюминия менее 0,02% снижается комплекс механических свойств штрипсов. Увеличение его концентрации более 0,05% приводит к неравномерности свойств штрипсов.
Кальций способствует модификации стали и измельчению зерен микроструктуры при чистовой горячей прокатке штрипсов в температурном интервале от 960-1050°С до 820-890°С. Кальций попадает в сталь при ее выплавке из известняка и шлака. Однако увеличение содержания кальция более 0,02% приводит к увеличению количества неметаллических включений и ухудшению пластических свойств и их равномерности штрипсов, что недопустимо.
Титан очищает металлическую матрицу от атомов внедрения. Карбидные и нитридные частицы типа TiC1,0 и TiN упрочняют сталь, не снижая ее пластических свойств. Однако увеличение содержания титана более 0,03% ухудшает равномерность свойств штрипсов и выход годного.
Хром повышает прочность стали за счет образования карбидов. Но увеличение содержания хрома более 0,40% приводит к снижению пластических свойств, ухудшению качества горячекатаных полос.
Медь является примесным элементом. При концентрации меди не более 0,4% она не оказывает вредного влияния на свариваемость штрипсов при производстве насосно-компрессорных и обсадных труб, но расширяет возможности использования металлического лома при выплавке, что удешевляет производство. При концентрации меди более 0,40% ухудшаются пластические свойства и свариваемость штрипсов.
Сталь предложенного состава может содержать в виде примесей не более 0,010% серы, не более 0,015% фосфора. При указанных предельных концентрациях эти элементы в стали предложенного состава не оказывают заметного негативного воздействия на качество штрипсов, тогда как их удаление из расплава стали существенно повышает затраты на производство и усложняет технологический процесс. Увеличение концентрации этих вредных примесей более предложенных значений ухудшает весь комплекс механических свойств штрипсов.
Экспериментально установлено, что при температуре начала чистовой прокатки выше 1050°С в стали данного состава интенсивно протекает укрупнение аустенитных зерен за счет их рекристаллизации после каждого прохода. Это, в свою очередь, приводит к формированию крупнозернистой ферритно-перлитной микроструктуры в результате α→γ превращения, что обеспечивает равномерность свойств горячекатаных штрипсов. Снижение температуры начала чистовой прокатки менее 960°С ухудшает технологическую пластичность штрипсов из стали предложенного состава, не позволяет получить стабильную температуру конца прокатки. Это также ухудшает равномерность свойств и выход годного.
Снижение температуры Ткп менее 820°С приводит к чрезмерному измельчению микроструктуры, ее наклепу, снижению пластических свойств горячекатаных штрипсов.
Уменьшение температуры смотки Тсм ниже 600°С для штрипсов толщиной 3,5-5,0 мм из низколегированной стали предложенного состава с содержанием углерода 0,22-0,24% ухудшает пластические свойства штрипсов и равномерность механических свойств по их длине. Увеличение Тсм выше 650°С приводит к снижению равномерности и уровня прочностных свойств штрипсов толщиной 3,5-5,0 мм и выхода годного.
Уменьшение температуры смотки Тсм ниже 580°С для штрипсов толщиной более 5,0 мм из низколегированной стали предложенного состава с содержанием углерода 0,22-0,24% приводит к упрочнению стали выше допустимого уровня и снижению пластичности. Увеличение Тсм выше 640°С приводит к снижению уровня и равномерности прочностных свойств штрипсов толщиной более 5,0 мм и выхода годного.
Уменьшение температуры смотки Тсм ниже 610°С для штрипсов толщиной 3,5-5,0 мм из низколегированной стали предложенного состава с содержанием углерода более 0,24% ухудшает пластические свойства штрипсов по их длине. Увеличение Тсм выше 660°С приводит к снижению равномерности и уровня прочностных свойств штрипсов толщиной 3,5-5,0 мм и выхода годного.
Уменьшение температуры смотки Тсм ниже 600°С для штрипсов толщиной более 5,0 мм из низколегированной стали предложенного состава с содержанием углерода более 0,24% приводит к упрочнению стали выше допустимого уровня и снижению пластичности. Увеличение Тсм выше 650°С приводит к снижению равномерности прочностных свойств штрипсов толщиной более 5,0 мм и выхода годного.
Примеры реализации способа
В конвертерном производстве производят выплавку и разливку низколегированных сталей различного состава (табл.2).
1. Слябы из стали состава 2 с содержанием углерода [С]=0,22% толщиной 250 мм загружают в методические печи и нагревают до температуры аустенитизации Та=1250°С. Разогретые слябы выдают на печной рольганг непрерывного широкополосного стана 2000 и подвергают прокатке в черновой группе клетей (черновая прокатка) до промежуточной толщины 40 мм. Затем раскат при температуре Тнп=1000°С задают в непрерывную 7-клетевую чистовую группу клетей, где обжимают до конечной толщины Н=4,5 мм. Регламентированную температуру конца прокатки Tкп=855°С поддерживают изменением скорости прокатки и межклетевым охлаждением полосы.
Прокатанную полосу выдают на отводящий рольганг, где охлаждают водой до температуры смотки. Поскольку полоса имеет толщину Н=4,5 мм, попадающую в интервал толщин 3,5-5,0 мм, и содержит 0,22% углерода, температуру смотки поддерживают равной Тсм=625°С. Охлажденную полосу сматывают в рулон.
2. Все те же операции, что и в примере 1, только используют слябы из стали, содержащей 0,24% углерода (состав 3), в чистовой группе клетей производят прокатку штрипсов толщиной Н=8,0 мм, а температуру смотки поддерживают равной Тсм=610°С.
3. Слябы из стали состава 4 с содержанием углерода [С]=0,25% толщиной 250 мм загружают в методические печи и нагревают до температуры аустенитизации Та=1200°С. Разогретые слябы выдают на печной рольганг непрерывного широкополосного стана 2000 и подвергают прокатке в черновой группе клетей (черновая прокатка) до промежуточной толщины 40 мм. Затем раскат при температуре Тнп=1050°С задают в непрерывную 7-клетевую чистовую группу клетей, где обжимают до конечной толщины Н=4,0 мм. Регламентированную температуру конца прокатки Ткп=830°С поддерживают изменением скорости прокатки и межклетевым охлаждением полосы.
Прокатанную полосу выдают на отводящий рольганг, где охлаждают водой до температуры смотки. Поскольку полоса имеет толщину Н=4,0 мм, попадающую в интервал толщин 3,5-5,0 мм, и содержит 0,25% углерода, температуру смотки поддерживают равной Тсм=635°С. Охлажденную полосу сматывают в рулон.
4. Все те же операции, что и в примере 3, только в чистовой группе клетей производят прокатку штрипсов толщиной Н=7,0 мм, а температуру смотки поддерживают равной Тсм=625°С.
Варианты прокатки штрипсов по различным режимам из сталей различного состава приведены в табл.3.
Из табл.3 следует, что при реализации предложенного способа (варианты №2, 3, 5-8) достигается повышение стабильности механических свойств и выхода годных горячекатаных штрипсов. Кроме того, штрипсы характеризуются удовлетворительной свариваемостью.
В случае запредельных значений заявленных параметров (варианты №1, 4, 8) уровень и стабильность механических свойств штрипсов ухудшаются, что сопровождается снижением выхода годного. Также более низкие и нестабильные свойства при нулевом выходе годного имеют штрипсы, произведенные согласно способу-прототипу (вариант №9).
Технико-экономические преимущества предложенного способа заключаются в том, что нагрев слябов из низколегированной стали предложенного состава, последующая их горячая черновая и контролируемая чистовая прокатка с температурой конца прокатки не ниже 820°С, охлаждение водой до температуры смотки, определяемой в зависимости от содержания углерода в низколегированной стали толщины штрипса, обеспечивает формирование оптимальной мелкозернистой ферритно-перлитной микроструктуры стали. За счет этого достигается получение заданного уровня и повышение стабильности механических свойств и выхода годного при удовлетворительной свариваемости полос.
Использование предложенного способа обеспечит повышение рентабельности производства полос для обсадных труб на 20-35%.
Источники информации
1. Заявка Японии №61-163210, МПК С21D 8/00, 1986.
2. Заявка Японии №61-223125, МПК С21D 8/02, С22С 38/54, 1986.
3. Патент РФ 2264475, МПК С21D 8/02, 20.11.2005 - прототип.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПРОИЗВОДСТВА ПОЛОС ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ | 2006 |
|
RU2312905C1 |
СПОСОБ ПРОИЗВОДСТВА ШТРИПСОВ | 2007 |
|
RU2348703C2 |
СПОСОБ ПРОИЗВОДСТВА ШТРИПСОВ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ | 2007 |
|
RU2358023C1 |
СПОСОБ ПРОИЗВОДСТВА ШТРИПСОВ В РУЛОНАХ | 2010 |
|
RU2436848C1 |
СПОСОБ ПРОИЗВОДСТВА ШТРИПСОВ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ | 2004 |
|
RU2264475C1 |
СПОСОБ ПРОИЗВОДСТВА ШТРИПСОВ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ | 2008 |
|
RU2375469C1 |
СПОСОБ ПРОИЗВОДСТВА КОНСТРУКЦИОННОГО ПРОКАТА ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ | 2018 |
|
RU2679675C1 |
СПОСОБ ПРОИЗВОДСТВА ШТРИПСОВ | 2007 |
|
RU2353670C1 |
СПОСОБ ПРОИЗВОДСТВА ПОЛОС ДЛЯ ИЗГОТОВЛЕНИЯ ТРУБ | 2005 |
|
RU2292404C1 |
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ | 2018 |
|
RU2689348C1 |
Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении на непрерывных широкополосных станах штрипсов для электросварных прямошовных насосно-компрессорных и обсадных труб. Для повышения стабильности механических свойств и выхода годного способ включает получение сляба, нагрев слябов до температуры 1200-1300°С, черновую и многопроходную чистовую прокатку до заданной толщины в регламентированном температурном диапазоне, охлаждение водой до температуры смотки, при этом сляб получают из стали, содержащей, мас.%: 0,22-0,28 С; 0,15-0,35 Si; 1,0-1,4 Mn; 0,02-0,05 Al; не более 0,02 Са; не более 0,03 Ti; не более 0,4 Cr; не более 0,4 Cu; не более 0,010 S; не более 0,015 Р; не более 0,012 N, остальное железо, многопроходную чистовую прокатку ведут в диапазоне температур от 960-1050 до 820-890°С, а охлаждение водой ведут до температуры смотки, равной 580-660°С. Причем при содержании углерода в стали 0,22-0,24 мас.% штрипсы толщиной 3,5-5,0 мм охлаждают водой до температуры смотки 600-650°С, а при толщине более 5,0 мм - до температуры смотки 580-640°С. При содержании углерода в стали более 0,24 мас.% штрипсы толщиной 3,5-5,0 мм охлаждают водой до температуры смотки 610-660°С, а при толщине более 5,0 мм - до температуры смотки 600-650°С. 2 з.п. ф-лы, 3 табл.
при этом многопроходную чистовую прокатку ведут в диапазоне температур от 960-1050 до 820-890°С.
СПОСОБ ПРОИЗВОДСТВА ШТРИПСОВ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ | 2004 |
|
RU2264475C1 |
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ | 2001 |
|
RU2191833C1 |
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ПОЛОСЫ | 2001 |
|
RU2203965C2 |
СПОСОБ ПРОИЗВОДСТВА ШТРИПСОВ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ | 2003 |
|
RU2255123C1 |
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНЫХ ПОЛОС ИЗ МАЛОУГЛЕРОДИСТОЙ СТАЛИ | 2000 |
|
RU2177042C2 |
СПОСОБ ГОРЯЧЕЙ ПРОКАТКИ ЛИСТОВ С РЕГЛАМЕНТИРОВАННЫМИ МЕХАНИЧЕСКИМИ СВОЙСТВАМИ | 1986 |
|
SU1412319A1 |
Авторы
Даты
2008-12-20—Публикация
2006-11-13—Подача