Изобретение относится к области переработки отходов, а именно к области переработки коммунально-бытовых отходов, и может быть использовано при переработке иловых отложений систем очистки сточных вод, предпочтительно сточных вод коммунального хозяйства.
Известен способ обработки суспензии активного ила (SU, авторское свидетельство 1662115, 1992), согласно которому в суспензию вводят флокулянт с последующей фильтрацией образовавшегося осадка, причем в качестве флокулянта используют сополимер акриламида с акриловой кислотой и третичной или четвертичной аммониевой солью.
Недостатком известного способа следует признать неполноту отделения твердой фазы, а также низкие характеристики получаемого осадка. Кроме того, этот способ не позволяет получить готовый продукт, который может быть использован в какой-либо области техники.
Известен способ получения продукта окислительно-гидролитической деструкции осадков бытовых и/или промышленных сточных вод, в том числе и активного ила (RU, патент 2081857). Согласно известному способу суспензию осадков, в том числе и активного ила, сгущенную до 85-90% влажности, подвергают тепловой обработке при 150-220°С, давлении 0,5-3,0 мПа в течение 10-120 мин, после чего при поддержании температуры 150-220°С суспензию обрабатывают последовательно щелочным агентом до рН более 10 и кислородсодержащим газом при давлении 1,5 5,0 мПа в течение 20-180 мин с последующим снижением давления до атмосферного, охлаждением суспензии до температуры менее 100°С и отделением целевого продукта в виде органоминерального комплекса от твердого осадка, содержащего нерастворимые соли тяжелых металлов. Указанный органоминеральный комплекс может быть использован в качестве органоминерального удобрения, а твердый осадок - в качестве сырья для получения тяжелых металлов.
Недостатком известного способа следует признать его сложность, а также значительную стоимость.
Наиболее близким аналогом разработанного способа можно признать (RU, патент 2098376) способ получения твердого тела. Известный способ включает смешивание в водной среде, по меньшей мере, двух соединений, одно из которых отход (в частности, иловые отложения аэротенков), содержащий тяжелые металлы, а другое - гидроксиды щелочноземельных металлов, причем смешивание ведут до получения пасты с последующим выдерживанием ее до затвердевания. Используемый отход содержит тяжелые металлы в виде гидроксидов, а количество свободной воды в пасте составляет 20-60% от массы смеси, при этом в полученном твердом теле, практически не содержащем силикаты и алюминаты, гидроксиды тяжелых металлов и гидроксиды щелочноземельных металлов образуют межмолекулярные связи.
Техническая задача, решаемая посредством предлагаемого технического решения, состоит в разработке новой технологии утилизации осадка сточных вод.
Технический результат, получаемый при реализации разработанного способа, состоит в уменьшении себестоимости процесса переработки отходов производства, а также осадка сточных вод.
Для получения указанного технического результата предложено использовать способ переработки осадка сточных вод, включающий смешение осадка с оксидом кальция, продукт смешения обрабатывают веществом, содержащим алюмосиликаты, выдерживают до образования пастообразного состояния, а затем гранулируют и высушивают полученные гранулы. Используемый оксид кальция может быть получен путем обжига отходов производства, содержащих карбонат или гидроксид кальция. Указанные гранулы могут быть использованы как заменитель керамзита, так и как средство структурирования почвы, а в случае дополнительного введения в осадок или продукт смешения питательных веществ или соответствующих культур микроорганизмов (в частности, азотфиксирующих бактерий) дополнительно в качестве удобрения. Желательно, чтобы смешение осадка и оксида кальция проводят в соотношении от 100:1 до 10:1. Это соотношение обеспечивает, с одной стороны, разогрев осадка за счет взаимодействия оксида кальция и воды до температуры гибели микроорганизмов осадка и, с другой стороны, связывание части воды осадка в гидроксид кальция. Предпочтительно, чтобы соотношение оксида кальция и алюмосиликата составляет от 1:2 до 1:4, наиболее предпочтительно 1:3. Указанное соотношение практически обеспечивает полноту реакции получающегося гидроксида кальция с алюмосиликатами с получением неорганического полимера - алюмосиликата кальция. В качестве вещества, содержащего алюмосиликат, обычно используют отходы различных производств - золу тепловых электростанций, низкосортный цемент или цементную пыль, низкосортные мергели, отходы производства цемента. Предпочтительно перед смешением осадка с оксидом кальция определяют его микробиологический и неорганический состав. При необходимости (при наличии значительного количества тяжелых металлов или патогенных микроорганизмов) проводят связыванием неорганических элементов в нерастворимые в воде соединения или дополнительное обеззараживание осадка. Также возможно при наличии излишнего содержания влаги в осадке его частичное обезвоживание, осуществляемое любым известным путем.
При реализации разработанного способа в базовом варианте проводят смешивание илового осадка сточных вод с содержанием влаги примерно 93-97% мас. с оксидом кальция, полученным как результат отжига карбоната кальция, представляющего собой отходы производства сахара, предпочтительно взятыми в соотношении 20:1, продукт смешения обрабатывают цементной пылью - отходами производства цемента из мергеля, при преимущественном соотношении смесь: цементная пыль (по массе) 1:3, выдерживают до образования пастообразного состояния (примерно 6 часов), а затем гранулируют образовавшийся полупродукт и высушивают полученные гранулы. Разогрев осадка сточных вод, влага которого взаимодействует с оксидом кальция, практически полностью уничтожает микрофлору, присущую осадку сточных вод.
Предпочтительно провести анализ илового осадка на содержание патогенный микрофлоры, а также на содержание тяжелых металлов и токсичных веществ. Результаты анализа определяют место применения полученных гранул. Если получаемые гранулы после высушивания практически не будут содержать вредных примесей, то они могут быть использованы для структурирования почвы в местах земледелия. В этом случае в смесь после введения алюмосиликатов могут дополнительно ввести макро- и микроудобрения, а также культуры микроорганизмов, благотворно влияющие на рост растений. Кроме того, в смесь после введения алюмосиликатов могут быть дополнительно введены вещества, сорбирующие токсичные примеси. Если же получающиеся гранулы могут содержать токсичные вещества или тяжелые металлы, то предпочтительно их использовать в качестве структурирующего материала в местах, не предназначенных для земледелия, или использовать в качестве замены керамзита.
В предпочтительном варианте способ может быть реализован следующим образом.
Первоначально проводят определение состава илового осадка, определяя содержание влаги, наличие патогенной флоры, а также тяжелых металлов и токсичных веществ. Величина влаги во многом определяет количество вводимого в иловый осадок оксида кальция. Примерный расчет термодинамики процесса взаимодействия оксида кальция и влаги позволяет определить количество выделяющегося при этом тепла и, следовательно, возможность обеззараживания имеющейся в иловом осадке микрофлоры. Кроме того, результаты анализа содержания тяжелых металлов, токсичных веществ и патогенной флоры позволят определить назначение производимых гранул. Определяют используемое соотношение илового осадка и предварительно полученного обжигом карбоната кальция оксида кальция и смешивают указанные компоненты. Смешение может быть произведено любым известным способом, конкретный вариант реализации которого зависит в основном от объемов смешиваемых компонентов. После остывания образовавшейся смеси обрабатывают продукт смешения алюмосиликатным реагентом, количество которого также рассчитывают, исходя из необходимости образования алюмосиликата кальция. Смесь выдерживают до загустевания. При этом при необходимости в смесь дополнительно могут ввести (в зависимости от области применения получаемых гранул) бактерициды для полноты уничтожения патогенной микрофлоры, сорбенты тяжелых металлов и токсичных веществ, макро- и микроудобрения, микроорганизмы, облегчающие усвоение растениями питательных веществ. Затем полученную смесь гранулируют любым известным способом с дальнейшим подсушиванием полученных гранул.
Разработанный способ позволяет утилизировать отходы различных областей жизнедеятельности человека с получением используемого в различных областях техники и сельского хозяйства продукта.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ОСАДКОВ СТОЧНЫХ ВОД | 2019 |
|
RU2708595C1 |
СПОСОБ ОБРАБОТКИ КОНДЕНСИРОВАННОЙ ТВЕРДОЙ ФАЗЫ ОСАДКА СТОЧНЫХ ВОД КОММУНАЛЬНОГО ХОЗЯЙСТВА | 2010 |
|
RU2449954C2 |
Способ приготовления техногенного почвогрунта БЭП на основе золошлаковых отходов (варианты) и техногенный почвогрунт БЭП | 2018 |
|
RU2688536C1 |
СПОСОБ ПЕРЕРАБОТКИ ОРГАНИЧЕСКИХ И БИОЛОГИЧЕСКИХ ОТХОДОВ В КОМПЛЕКСНЫЕ ОРГАНОМИНЕРАЛЬНЫЕ УДОБРЕНИЯ | 2020 |
|
RU2726650C1 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ И УТИЛИЗАЦИИ ОСАДКОВ СТОЧНЫХ ВОД | 2005 |
|
RU2293070C2 |
Способ производства грунта на основе осадков сточных вод, переработанных химическими и физическими методами | 2023 |
|
RU2821572C1 |
Способ утилизации осадка бытовых сточных вод | 2017 |
|
RU2660871C1 |
СПОСОБ ПЕРЕРАБОТКИ ОСАДКОВ СТОЧНЫХ ВОД | 2010 |
|
RU2457909C2 |
СПОСОБ ПОЛУЧЕНИЯ ИЗОЛЯЦИОННОГО МАТЕРИАЛА ДЛЯ ПОЛИГОНОВ ЗАХОРОНЕНИЯ БЫТОВЫХ И ПРОМЫШЛЕННЫХ ОТХОДОВ | 2010 |
|
RU2437845C1 |
ПОЛИГОН ПЕРЕРАБОТКИ ИЛОВОГО ОСАДКА СТОЧНЫХ ВОД | 2008 |
|
RU2395465C2 |
Изобретение относится к области переработки отходов, а именно к переработке осадков сточных вод. Способ включает смешение осадка с соединением щелочноземельного металла. В качестве соединения щелочноземельного материала используют оксид кальция, полученный при переработке твердых кальцийсодержащих отходов. Продукт смешения обрабатывают цементом, выдерживают до образования пастообразного состояния, а затем гранулируют и высушивают полученные гранулы. Обеспечивает уменьшение себестоимости процесса переработки отходов производства, а также осадка сточных вод. 8 з.п. ф-лы.
СПОСОБ ПОЛУЧЕНИЯ ТВЕРДОГО ТЕЛА И СТРОИТЕЛЬНЫЙ МАТЕРИАЛ | 1994 |
|
RU2098376C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ УДОБРЕНИЙ ИЗ ОРГАНИЧЕСКИХ ОТХОДОВ | 1998 |
|
RU2132320C1 |
RU 2064473 С1, 27.07.1996 | |||
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА КАЛЬЦИЯ | 2002 |
|
RU2223222C1 |
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННЫХ СИНТЕТИЧЕСКИХ ЦЕОЛИТОВ | 2005 |
|
RU2283279C1 |
RU 94036651 С1, 27.08.1996 | |||
ПРОДУКТ ОКИСЛИТЕЛЬНО-ГИДРОЛИТИЧЕСКОЙ ДЕСТРУКЦИИ ОСАДКОВ СТОЧНЫХ ВОД И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 1995 |
|
RU2081857C1 |
Авторы
Даты
2008-12-27—Публикация
2007-04-04—Подача