Область применения
Способ может быть использован для повышения ресурса двигателя и снижения расхода топлива на теплоходах, а также на других объектах, имеющих высокооборотистые двигатели с газотурбинным наддувом, эксплуатируемых на повышенной частоте вращения или номинальной.
Уровень техники
Проектирование и изготовление гребных винтов основывается на том, что все режимы работы двигателей, лежащие выше ограничительной характеристики, относятся к перегрузочным по тепловой и механической напряженности [1]. У двухтактных двигателей и четырехтактных с газотурбинным наддувом при постоянном среднем эффективном давлении (вращающем моменте) снижение частоты вращения ведет к увеличению тепловой напряженности деталей двигателя (следствие - уменьшение коэффициента избытка воздуха). [1] По этой причине в двигателях с газотурбинным наддувом ограничение среднего эффективного давления (или крутящего момента) недостаточно, чтобы сохранить тепловую и механическую напряженность на частичных скоростных режимах на том же уровне, что и на номинальном режиме. Уменьшение частоты вращения двигателя путем снижения цикловой подачи топлива вызывает снижение среднего эффективного давления (или крутящего момента) на частичных скоростных режимах, что позволяет сохранить тепловую и механическую напряженность [1].
У дизелей с газотурбинным наддувом, с высокой частотой вращения при постоянном среднем эффективном давлении (вращающем моменте) при нагрузке двигателя, соответствующей номинальной, снижение частоты вращения ведет к уменьшению тепловой напряженности деталей двигателя (следствие - увеличение коэффициента избытка воздуха) и уменьшению механической нагрузки. По этой причине в двигателях с газотурбинным наддувом ограничение среднего эффективного давления (или крутящего момента) достаточно, чтобы уменьшить тепловую и механическую напряженность на частичных скоростных режимах, при загрузке соответствующей номинальной. Уменьшение частоты вращения двигателя с газотурбинным наддувом путем определенной нагрузки ведет к увеличению цикловой подачи топлива (вызванной регулятором топливного насоса) по отношению к установившейся частоте вращения, вызывает сохранение среднего эффективного давления (или крутящего момента) на частичных скоростных режимах. Уменьшение количества цикловых подач топлива и лучшее его смесеобразование, за счет увеличения коэффициента избытка воздуха, при котором сгорание топлива более полное, позволяет уменьшить тепловую и механическую напряженность.
Из уровня техники известны теплоходы типа «Заря», имеющие двигатели с газотурбинным наддувом и технические характеристики, отраженные в Таблице 1. Также из уровня техники известны теплоходы марки «Линда», имеющие двигатели с газотурбинным наддувом и технические характеристики, отраженные в Таблице 2. Данные теплоходы получили массовое распространение в России, но при этом функциональная работа данных теплоходов имеет недостатки, связанные с малым ресурсом двигателя и большим расходом топлива, которые возникают за счет комплексных причин, объединяющих в себе повышенную частоту вращения двигателя, высокие механическую и тепловую нагрузки.
Например, при работе турбокомпрессора частота вращения достигается выпускными газами при температуре +350°С для т/х «Заря» и +450°С для т/х «Линда», и наддувочный воздух, поступающий в цилиндры, теряет плотность из-за относительного нагрева. Ресурс двигателей, стоящих на теплоходах т/х «Заря» и «Линда», составляет 9000 часов, 75% двигателей т/х «Заря» и 50% двигателей т/х «Линда» вырабатывают свой ресурс уже после двух капитальных ремонтов, при эксплуатации со стандартными винтами. Нагрузка двигателя по навесному оборудованию у данных теплоходов составляет до 10-15%.
Задача данного изобретения - повышение производительности функционирования теплоходов, имеющих высокооборотистые двигатели с газотурбинным наддувом, эксплуатируемые на повышенной частоте вращения или номинальной, путем снижения частоты вращения, механической и тепловой нагрузок, за счет использования гребного винта с измененным шагом и дисковым отношением.
Технический результат, достигаемый при использовании способа, состоит в увеличения ресурса двигателя и в экономии расхода топлива.
Сущность изобретения
Заявляемый технический результат достигается за счет того, что в способе повышения ресурса двигателя и снижения расхода топлива на двигателях, имеющих газотурбинный наддув, эксплуатируемых на повышенной частоте вращения или номинальной, работу двигателя задают на меньших оборотах в сравнении с эксплуатационными с сохранением других эксплуатационных параметров, при одновременном снижении частоты вращения и температуры выпускных газов, и увеличении шага гребного винта и дискового отношения.
У дизелей с газотурбинным наддувом, с высокой частотой вращения при постоянном среднем эффективном давлении (вращающем моменте) при нагрузке двигателя, соответствующей номинальной, снижение частоты вращения ведет к уменьшению тепловой напряженности деталей двигателя (следствие - увеличение коэффициента избытка воздуха) и уменьшению механической нагрузки. По этой причине в двигателях с газотурбинным наддувом ограничения среднего эффективного давления (или крутящего момента) достаточно, чтобы уменьшить тепловую и механическую напряженность на частичных скоростных режимах, при загрузке, соответствующей номинальной. Уменьшение частоты вращения двигателя с газотурбинным наддувом путем определенной нагрузки, ведет к увеличению цикловой подачи топлива (вызванной регулятором топливного насоса) по отношению к установившейся частоте вращения, вызывает сохранение среднего эффективного давления (или крутящего момента) на частичных скоростных режимах. Уменьшение количества цикловых подач топлива и лучшее смесеобразование, за счет увеличения коэффициента избытка воздуха, при котором сгорание топлива более полное, позволяет уменьшить тепловую и механическую напряженность.
Под снижением механической нагрузки подразумевается износ двигателя. Снижение частоты вращения уменьшает его.
Способ основан на выявлении зависимостей от снижения оборотов двигателя при сохранении эксплуатационных параметров, с одновременным снижением механической нагрузки и температуры выпускных газов, и увеличения шага гребного винта и шагового отношения.
Путем экспериментов (см. Таблицы 1, 3) было установлено, что в системе теплохода, функционирующей на основе гребного винта с 4 лопастями, при выполнении конструкции гребного винта теплохода, диаметр которого составляет 0.696 м, таким образом, что его дисковое отношение составляет 1.1, шаг - 0.640 м, шаговое отношение - 0.92, а также при поддержании эксплуатационной скорости теплохода на уровне 32 км/ч, а эксплуатационной частоты вращения на уровне 1100 об/мин, достигается увеличение ресурса двигателя и снижение расхода топлива.
Путем экспериментов (см. Таблицы 2, 4) было установлено, что в системе теплохода, функционирующей на основе гребного винта с 6 лопастями, при выполнении конструкции гребного винта теплохода, диаметр которого составляет 0.7 м, таким образом, что его дисковое отношение составляет 1.35, шаг - 0.950 м, шаговое отношение - 1.35, а также при поддержании эксплуатационной скорости теплохода на уровне 42 км/ч, а эксплуатационной частоты вращения на уровне 1300 об/мин, также достигается увеличение ресурса двигателя и снижение расхода топлива.
Изменение дискового отношения (см. Таблицу 1) на 1.1 по сравнению с 0.95, для четырех- лопастных винтов, дает увеличение засасывания водометом воды, которая за счет поджатая соплом создает повышенный упор (водомет является осевым насосом) (см. Таблицу 3).
Шаг гребного винта выбирают 0.640 по сравнению с 0.602 (см. Таблицу 1), что позволяет повысить его упор и способность сохранять эксплуатационную скорость при 1100 об/мин, по сравнению с 1350 об/мин в прототипе (см. Таблицу 3).
Частота вращения 1100 об/мин поддерживается всережимным регулятором ТНВД (топливным насосом высокого давления).
Изменение дискового отношения (см. Таблицу 2) на 1.35 по сравнению с 1.45 для шести - лопастных винтов, дает увеличение КПД гребного винта за счет того, что при уменьшении общей площади лопастей, уменьшается сопротивление воды вращению гребного винта и двигатель получает разгрузку с повышением КПД гребного винта (см. Таблицу 4).
Шаг гребного винта выбирают 0.950 по сравнению с 0.890 (см. Таблицу 2) для т/х «Линда», что позволяет повысить его упор и способность сохранять эксплуатационную скорость при 1300 об/мин, по сравнению с 1500 об/мин в прототипе (см. Таблицу 4). Частота вращения 1300 об/мин поддерживается всережимным регулятором ТНВД.
Установка шести-лопастных винтов производится на теплоходы с высокой частотой вращения двигателя для снижения вибрации, создаваемой вращением КПД винта (например, четырех-лопастного) с меньшим количеством лопастей выше. Поэтому выбор винта зависит от конкретной задачи по эксплуатации судна. Испытания способа проводились на теплоходе «Линда-4». Результаты испытаний отражены в Приложении. Результаты показали, что достигается указанное выше снижение частоты вращения и экономический эффект в виде снижения расхода топлива и износа двигателя.
Эксплуатационная скорость (см. Таблицы 1 и 2) движения теплоходов является стандартной и выбрана предприятием, их эксплуатирующим, для обеспечения наиболее продолжительного ресурса двигателя.
Сопоставление процентного изменения параметров Таблицы 1 и 2 позволяет сделать вывод о наличии зависимости, согласно которой происходит одновременное снижение механической нагрузки и температуры выпускных газов на 10-25%, причем шаг гребного винта и шаговое отношение увеличивают на 5-8%.
В частности, из сравнения изменений параметров в Таблицах 1 и 2 видно, что шаг был увеличен на 6.31% и 6.74%, соответственно, шаговое отношение было увеличено на 6.98% и 6.30%, соответственно, снижение температуры составило 14.29-20% и 18.6%, соответственно, снижение частоты вращения составило 18.52% и 13.33%, соответственно. Таким образом, для данных примеров по теплоходам «Заря» и «Линда» работу двигателя задают на меньших оборотах в сравнении с эксплуатационными с сохранением других эксплуатационных параметров, при одновременном снижении частоты вращения на 8.33-23.52% и температуры выпускных газов на 9.29-25%, и увеличении шага гребного винта на 4.79-8.24% и шагового отношения на 4.8-8.48%.
Динамика зависимости, отраженная в Таблицах 1-4, показывает, что при задании работы двигателя на меньших оборотах в сравнении с эксплуатационными параметрами с сохранением других эксплуатационных параметров, при одновременном снижении частоты вращения и температуры выпускных газов, и увеличении шага гребного винта и дискового отношения, достигается увеличение ресурса двигателя и в экономии расхода топлива вне зависимости от типа двигателя с газотурбинным наддувом.
Способ позволяет исключить нагрузку двигателя на повышенной и номинальной частоте вращения, когда двигатель сам нагружает себя, за счет наддува, т.е. турбокомпрессора, который в свою очередь нагнетает воздух во всасывающий коллектор под давлением несколько большим. Но воздух при этом успевает нагреваться за счет температуры самого двигателя, и теряет свою плотность, поэтому в цилиндрах происходит неполное сгорание топлива и повышается температура выпускных газов, что и приводит к тепловой нагрузке двигателя.
Следовательно, для достижения результата согласно способу по увеличению ресурса двигателя и снижения расхода топлива, необходимо обеспечить загруженность двигателя на меньшей частоте вращения, обеспечиваемой регулятором ТНВД, в зависимости от объекта применения.
Источники информации
1. "СУДОВЫЕ ДВИГАТЕЛИ ВНУТРЕНЕГО СГОРАНИЯ", Ю.Я.Фомин, А.И.Горбань, В.В.Добровольский, А.И.Лукин, В.С.Наливайко, В.М.Шандыба, А.Я.Шквар, Издательство «Судостроение», 1989 год.
выпускными газами с t 450°С, наддувочный воздух, поступающий в цилиндры, теряет плотность из-за относительного нагрева
название | год | авторы | номер документа |
---|---|---|---|
Энергетическая установка промыслового судна | 2022 |
|
RU2781439C1 |
ДВУХТОПЛИВНЫЙ ГАЗОБЕНЗИНОВЫЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ С ГАЗОТУРБИННЫМ НАДДУВОМ | 1994 |
|
RU2088768C1 |
СПОСОБ И СИСТЕМА ДЛЯ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ | 2018 |
|
RU2718383C2 |
СИСТЕМА И СПОСОБ (ВАРИАНТЫ) УПРАВЛЕНИЯ ПОТОКОМ ВОЗДУХА В ДВИГАТЕЛЕ | 2015 |
|
RU2694994C2 |
СПОСОБ ТЕХНИЧЕСКОГО ДИАГНОСТИРОВАНИЯ ГАЗОТУРБИННОЙ УСТАНОВКИ | 2013 |
|
RU2536759C1 |
ПРОПУЛЬСИВНЫЙ КОМПЛЕКС ТОРПЕДЫ, СПОСОБ РАБОТЫ И ВАРИАНТЫ ДВИЖИТЕЛЯ | 2020 |
|
RU2757339C1 |
Способ снижения расхода топлива газотурбинного двигателя (ГТД), снабженного стартером | 2019 |
|
RU2725296C1 |
Гребной винт теплохода | 2019 |
|
RU2702465C1 |
СПОСОБ УПРАВЛЕНИЯ СУДОВОЙ КОМБИНИРОВАННОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКОЙ | 2011 |
|
RU2483972C1 |
СПОСОБ УПРАВЛЕНИЯ ПОДАЧЕЙ ТОПЛИВА ДЛЯ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ | 2006 |
|
RU2322601C1 |
Изобретение относится к двигателестроению, в частности к двигателям с газотурбинным наддувом. Технический результат, достигаемый при использовании способа, состоит в увеличении ресурса двигателя и в экономии расхода топлива. Способ повышения ресурса двигателя и снижения расхода топлива на теплоходах, имеющих двигатели с газотурбинным наддувом, характеризуется тем, что работу двигателя задают на меньших оборотах в сравнении с эксплуатационными, при одновременном снижении частоты вращения и температуры выпускных газов двигателя и увеличении шага и дискового отношения гребного винта. 1 з.п. ф-лы, 4 табл.
Фомин Ю.Я., Горбань А.И., Добровольский В.В., Лукин А.И., Наливайко В.С., Шандыба В.М., Шквар А.Я | |||
Судовые двигатели внутреннего сгорания, Судостроение, 1989, с.12-56 | |||
RU 95102905 А1, 10.02.1997 | |||
Суперкавитирующий гребной винт с изменяемой геометрией лопастей | 1972 |
|
SU475310A1 |
Способ регулирования числа оборотов валопровода судовой энергетической установки с гидротрансформаторами прямого и обратного хода | 1979 |
|
SU897638A1 |
Способ работы судовой газопаротурбинной установки | 1981 |
|
SU1086194A1 |
Способ снижения сопротивления вращению гребного винта судна | 1986 |
|
SU1678199A3 |
СПОСОБ УПРАВЛЕНИЯ ГРЕБНЫМ ВИНТОМ РЕГУЛИРУЕМОГО ШАГА | 1991 |
|
RU2048384C1 |
СПОСОБ РЕГУЛИРОВАНИЯ ВЫХОДНОЙ МОЩНОСТИ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 1990 |
|
RU2037638C1 |
Авторы
Даты
2008-12-27—Публикация
2007-04-05—Подача