ТРУБНАЯ ЗАГОТОВКА ИЗ НИЗКОУГЛЕРОДИСТОЙ МИКРОЛЕГИРОВАННОЙ СТАЛИ Российский патент 2009 года по МПК C21D8/10 C22C38/20 C22C38/60 

Описание патента на изобретение RU2343210C2

Изобретение относится к области металлургии, в частности к производству горячекатаной трубной заготовки диаметром от 80 до 180 мм из низкоуглеродистой микролегированной стали, предназначенной для производства бесшовных труб различного назначения.

Наиболее близким аналогом к изобретению является известная трубная заготовка из низколегированной стали, содержащей (мас.%): углерод 0,05-0,30, марганец 0,35-1,50, кремний 0,15-1,0, хром 0,005-0,5, никель 0,005-0,50, медь 0,005-0,50, сера не более 0,015, фосфор не более 0,020, алюминий 0,01-0,05, ниобий 0,01-0,06, железо и неизбежные примеси - остальное. Трубная заготовка имеет высокий уровень чистоты стали по неметаллическим включениям и определенную микроструктуру (RU 2221875 C2, 20.01.2004, С21С 5/52).

Важнейшим требованием, предъявляемым к трубной заготовке из низкоуглеродистой, микролегированной стали, является, с одной стороны, обеспечение заданных параметров металлургического качества: однородности микро- и макроструктуры, низкого содержания неметаллических включений, с другой стороны - обеспечение повышенного комплекса потребительских свойств.

Техническим результатом изобретения является обеспечение повышенного уровня потребительских свойств при обеспечении благоприятного соотношения прочности, пластичности и вязкости, минимальном уровне анизотропии механических свойств, низкого содержания неметаллических включений, однородной макро- и микроструктуры проката.

Технический результат достигается тем, что в известной трубной заготовке из низкоуглеродистой микролегированной стали, непрерывно-литой, горячекатаной, имеющей заданные параметры неметаллических включений, структуры, размера действительного зерна и механических свойств, сталь содержит следующее соотношение компонентов в мас.%:

углерод0,13-0,17марганец0,45-0,65кремний0,17-0,37хром0,50-0,70ванадий0,050-0,090алюминий0,020-0,050кальций0,001-0,05ниобий0,005-0,030медь не более0,25никель не более0,25азот не более0,008железо инеизбежные примесиостальное,

при выполнении следующих соотношений элементов:

C+(Mn+Cr+Cu)/20+Si/20+N/60+V/10≤0,26,

трубная заготовка имеет феррито-перлитную структуру, размер действительного зерна 5-8 балл, по макроструктуре: центральная пористость, точечная неоднородность, подусадочная ликвация, ликвационный квадрат не более 2 балла по каждому виду, ликвационные полоски не более 1 балла, по неметаллическим включениям сульфиды, оксиды точечные, оксиды строчечные, силикаты хрупкие, силикаты пластичные, силикаты недеформированные не более 4,0 балл по каждому виду включений. В качестве неизбежных примесей сталь дополнительно содержит в мас.%: мышьяк - не более 0,03, олово не более 0,02, свинец не более 0,01, цинк не более 0,005, никель не более 0,25, сера не более 0,010, фосфор не более 0,015. Механические свойства после нормализации: временное сопротивление разрыву не менее 415 Н/мм2, предел текучести не менее 241 Н/мм2, относительное удлинение - не менее 20%, относительное сужение - не менее 50%, ударная вязкость KCU+20 - не менее 25 Дж/см2.

Приведенные сочетания легирующих элементов позволяют получить в готовом изделии феррито-перлитную мелкодисперсную структуру, низкое содержание неметаллических включений, однородную макроструктуру и благоприятное сочетание характеристик прочности и пластичности.

Углерод вводится в композицию данной стали с целью обеспечения заданного уровня ее прочности и прокаливаемости. Верхняя граница содержания углерода 0,17 обусловлена необходимостью обеспечения требуемого уровня пластичности стали, а нижняя - соответственно 0,13 - обеспечением требуемого уровня прочности и прокаливаемости данной стали.

Марганец и хром используются, с одной стороны, как упрочнители твердого раствора, с другой стороны, как элементы, повышающие устойчивость переохлажденного аустенита стали. При этом верхний уровень содержания марганца - 0,65% и хрома - 0,70% определяется необходимостью обеспечения требуемого уровня пластичности стали, а нижний - 0,45% и 0,50% соответственно необходимостью обеспечить требуемый уровень прочности и прокаливаемости и теплостойкости данной стали.

Кремний относится к ферритообразующим элементам. Нижний предел по кремнию - 0,17% обусловлен технологией раскисления стали. Содержание кремния выше 0,37% неблагоприятно скажется на характеристиках пластичности стали.

Ванадий вводят в композицию данной стали с целью обеспечения мелкодисперсной, однородной зеренной структуры. При этом он управляет процессами в нижней части аустенитной области (определяет склонность к росту зерна аустенита, стабилизирует структуру при термомеханической обработке, повышает температуру рекристаллизации и, как следствие, влияет на характер γ-α - превращения. Верхняя граница содержания ванадия - 0,09% обусловлена необходимостью обеспечения требуемого уровня пластичности стали, а нижняя - соответственно 0.05% - обеспечением требуемого уровня прочности данной стали.

Алюминий используют в качестве раскислителя. Так нижний уровень содержания алюминия - 0,02 определяется требованием обеспечения однородности структуры, а верхний уровень 0,05 - требованием обеспечения заданного уровня пластичности стали.

Кальций - модификатор неметаллических включений, нижний уровень - 0,001% определяется необходимостью обеспечить требуемую морфологию неметаллических включений, а верхний - 0,05% - необходимостью обеспечить заданный уровень пластичности стали.

Соотношение C+(Mn+Cr+Cu)/20+Si/20+N/60+V/10≤0,26 определяет условия свариваемости заготовки.

Пример получения трубной заготовки. Выплавку исследуемой стали, химический состав которой в мас.%: углерод 0,15, марганец 0,55, кремний 0,29, хром 0,66, ванадий 0,062, алюминий 0,035, кальций 0,008, азот 0,007, медь 0,1, при выполнении условия: C+(Mn+Cr+Cu)/20+Si/20+N/60+V/10=0.21 производят в 150-тонных дуговых сталеплавильных печах ДСП с использованием в шихте 100% металлизованных окатышей, что обеспечивает получение массовой доли азота перед выпуском из ДСП не более 0,003%, а также низкое содержание цветных примесей. Предварительное легирование металла по марганцу и кремнию производят в ковше при выпуске из ДСП. После выпуска производят продувку металла аргоном через донный продувочный блок, во время которой сталь раскисляют алюминием. После этого металл поступает на агрегат комплексной обработки стали (АКОС), на котором имеется возможность нагрева металла до необходимой температуры, продувки его аргоном через донный продувочный блок, дозированной присадки необходимых ферросплавов и обработки стали порошковой проволокой с различными наполнителями. На АКОСе производят наведение рафинировочного шлака присадкой извести и плавикового шпата, раскисление шлака гранулированным алюминием, легирование металла алюминием до содержания 0,050%, доводка металла по содержанию марганца, нагрев до температуры, обеспечивающей дальнейшую обработку. После обработки на АКОС металл подвергают вакуумной обработке на порционном вакууматоре. Во время вакуумирования производят окончательную корректировку по химическому составу. После вакуумирования металл обрабатывают силикокальцием и передают на разливку. Разливку производят на четырехручьевых УНРС радиального типа в слиток размерами 300×360 мм со скоростью вытягивания 0,6÷0,7 м/мин с защитой металла от окисления путем использования покровных шлаковых смесей в промежуточном ковше и кристаллизаторе, защитных труб, погружных стаканов и подачей аргона. Это также обеспечивает получение низкого содержания азота и кислорода и чистоту металла по неметаллическим включениям. После разливки и пореза на мерную длину полученные непрерывно-литые заготовки охлаждают в печах контролируемого охлаждения. Горячую прокатку сортового проката начинают при температуре 1180-1150°С и заканчивают при температуре 840-950°С. Для определения механических свойств заготовку подвергают нормализации.

Механические характеристики при комнатной температуре определяют на образцах тип I, ГОСТ 1497-84 на испытательной машине "INSTRON-1185" с тензометрической регистрацией деформации. Скорость нагружения образца - 5 мм/мин. Определяют характеристики прочности σb и σ0.2 и пластичности - δ. Характеристики ударной вязкости при комнатной температуре определяют на образцах тип I, ГОСТ 9454-78 на механическом копре МК-30. Величину вязкой составляющей в изломах ударных образцов определяют визуально.

Средние значения характеристик подсчитывают по результатам испытаний не менее трех образцов на точку. Значимость различий средних значений анализируемых величин оценивают с использованием критерия Стьюдента, вычисляемого следующим образом:

где M1 и M2 - средние значения сравниваемых величин; S12 и S22 - дисперсии среднего; tkr0.05(α) - критическое значение критерия Стьюдента при уровне значимости 0.95 и числе степеней свободы - α.

Макроструктуру контролируют в соответствии с ТУ 14-1-5212-93 и ГОСТ 10243-75.

В результате горячей прокатки получают трубную заготовку ⊘110 мм, длиной - 9000 мм, структура пластинчатого перлита, балл действительного зерна - 7. Макроструктура: центральная пористость - 1 балл, точечная неоднородность 1 балл, светлый контур - 1 балл, подусадочная ликвация 1 балл, ликвационные полоски - 0,5 балл. Неметаллические включения: сульфиды - 1,0 балл, оксиды точечные - 0,5 балл, оксиды строчечные - 1 балл, силикаты хрупкие - 0,5 балл, силикаты пластичные - 0,5 балл, силикаты недеформированные - 1,5 балл.

Механические свойства после нормализации - временное сопротивление разрыву - 465 Н/мм2, предел текучести - 325 Н/мм2, относительное удлинение - 20%, относительное сужение - 58%, ударная вязкость KCU+20 - 34 Дж/см2.

Внедрение трубной заготовки из низкоуглеродистой микролегированной стали позволило обеспечить повышенный уровень потребительских свойств проката при обеспечении благоприятного соотношения прочности, пластичности и вязкости, минимальном уровне анизотропии механических свойств, низкого содержания неметаллических включений, однородной макро- и микроструктуры проката.

Похожие патенты RU2343210C2

название год авторы номер документа
ТРУБНАЯ ЗАГОТОВКА ИЗ НИЗКОУГЛЕРОДИСТОЙ МАРГАНЕЦСОДЕРЖАЩЕЙ СТАЛИ 2006
  • Бобылев Михаил Викторович
  • Гонтарук Евгений Иванович
  • Лехтман Анатолий Адольфович
  • Угаров Андрей Алексеевич
  • Фомин Вячеслав Иванович
  • Шляхов Николай Александрович
RU2336329C1
ТРУБНАЯ ЗАГОТОВКА ИЗ МИКРОЛЕГИРОВАННОЙ СТАЛИ 2006
  • Бобылев Михаил Викторович
  • Гонтарук Евгений Иванович
  • Лехтман Анатолий Адольфович
  • Угаров Андрей Алексеевич
  • Фомин Вячеслав Иванович
  • Шляхов Николай Александрович
RU2336328C1
ТРУБНАЯ ЗАГОТОВКА ИЗ НИЗКОУГЛЕРОДИСТОЙ МИКРОЛЕГИРОВАННОЙ СТАЛИ 2006
  • Угаров Андрей Алексеевич
  • Гонтарук Евгений Иванович
  • Лехтман Анатолий Адольфович
  • Фомин Вячеслав Иванович
  • Бобылев Михаил Викторович
RU2330895C2
ТРУБНАЯ ЗАГОТОВКА ИЗ МИКРОЛЕГИРОВАННОЙ, БОРСОДЕРЖАЩЕЙ СТАЛИ 2006
  • Бобылев Михаил Викторович
  • Гонтарук Евгений Иванович
  • Лехтман Анатолий Адольфович
  • Угаров Андрей Алексеевич
  • Фомин Вячеслав Иванович
  • Шляхов Николай Александрович
RU2336324C1
ТРУБНАЯ ЗАГОТОВКА ИЗ СРЕДНЕУГЛЕРОДИСТОЙ МИКРОЛЕГИРОВАННОЙ СТАЛИ 2006
  • Бобылев Михаил Викторович
  • Гонтарук Евгений Иванович
  • Лехтман Анатолий Адольфович
  • Угаров Андрей Алексеевич
  • Фомин Вячеслав Иванович
  • Шляхов Николай Александрович
RU2336323C1
ТРУБНАЯ ЗАГОТОВКА ИЗ СРЕДНЕУГЛЕРОДИСТОЙ НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2006
  • Шляхов Николай Александрович
  • Гонтарук Евгений Иванович
  • Лехтман Анатолий Адольфович
  • Фомин Вячеслав Иванович
  • Бобылев Михаил Викторович
RU2336334C2
ТРУБНАЯ ЗАГОТОВКА ИЗ ШАРИКОПОДШИПНИКОВОЙ СТАЛИ 2006
  • Угаров Андрей Алексеевич
  • Гонтарук Евгений Иванович
  • Лехтман Анатолий Адольфович
  • Фомин Вячеслав Иванович
  • Бобылев Михаил Викторович
RU2338797C2
ТРУБНАЯ ЗАГОТОВКА ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2006
  • Бобылев Михаил Викторович
  • Гонтарук Евгений Иванович
  • Лехтман Анатолий Адольфович
  • Угаров Андрей Алексеевич
  • Фомин Вячеслав Иванович
  • Шляхов Николай Александрович
RU2341567C2
ТРУБНАЯ ЗАГОТОВКА ИЗ СРЕДНЕУГЛЕРОДИСТОЙ НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2006
  • Бобылев Михаил Викторович
  • Гонтарук Евгений Иванович
  • Лехтман Анатолий Адольфович
  • Угаров Андрей Алексеевич
  • Фомин Вячеслав Иванович
  • Шляхов Николай Александрович
RU2337152C1
ТРУБНАЯ ЗАГОТОВКА ИЗ НИЗКОУГЛЕРОДИСТОЙ МОЛИБДЕНСОДЕРЖАЩЕЙ СТАЛИ 2006
  • Шляхов Николай Александрович
  • Гонтарук Евгений Иванович
  • Лехтман Анатолий Адольфович
  • Фомин Вячеслав Иванович
  • Бобылев Михаил Викторович
RU2336332C2

Реферат патента 2009 года ТРУБНАЯ ЗАГОТОВКА ИЗ НИЗКОУГЛЕРОДИСТОЙ МИКРОЛЕГИРОВАННОЙ СТАЛИ

Изобретение относится к области металлургии, в частности к производству трубной заготовки диаметром от 80 до 160 мм, предназначенной для производства бесшовных труб различного назначения. Для обеспечения повышенного уровня потребительских свойств при обеспечении благоприятного соотношения прочности, пластичности и вязкости, минимальном уровне анизотропии механических свойств трубная заготовка изготовлена из стали, содержащей следующее соотношение компонентов в мас.%: углерод 0,13-0,17, марганец 0,45-0,65, кремний 0,17-0,37, хром 0,5-0,70, ванадий 0,050-0,090, алюминий 0,02-0,05, кальций 0,001-0,05, ниобий 0,005-0,030, азот не более 0,008, медь не более 0,25, остальное железо и неизбежные примеси, при выполнении условия: C+(Mn+Cr+Cu)/20+Si/20+N/60+V/10≤0,26, при этом она имеет феррито-перлитную структуру, размер действительного зерна 5-8 баллов, макроструктуру по центральной пористости, точечной неоднородности, ликвационному квадрату, подусадочной ликвации не более 2 баллов по каждому виду, ликвационным полоскам не более 1 балла, неметаллические включения по сульфидам, оксидам точечным, оксидам строчечным, силикатам хрупким, силикатам пластичным, силикатам недеформированным не более 4,0 баллов по каждому виду, временное сопротивление разрыву не менее 415 Н/мм2, предел текучести не менее 241 Н/мм2, относительное удлинение не менее 20%, относительное сужение не менее 50%, ударную вязкость KCU+20 не менее 25 Дж/см2. 1 з.п. ф-лы.

Формула изобретения RU 2 343 210 C2

1. Трубная заготовка из низкоуглеродистой микролегированной стали, непрерывнолитая, горячекатаная, имеющая заданные параметры неметаллических включений, структуры, размера действительного зерна и механических свойств, отличающаяся тем, что она выполнена из стали, содержащей следующее соотношение компонентов, мас.%:

углерод0,13-0,17марганец0,45-0,65кремний0,17-0,37хром0,50-0,70ванадий0,050-0,090алюминий0,020-0,050кальций0,001-0,05ниобий0,005-0,030азот не более0,008медь не более0,25железо инеизбежные примесиостальное

при выполнении условия:

C+(Mn+Cr+Cu)/20+Si/20+N/60+V/10≤0,26, при этом имеет феррито-перлитную структуру, размер действительного зерна 5-8 баллов, макроструктуру по центральной пористости, точечной неоднородности, подусадочной ликвации, ликвационному квадрату не более 2 баллов по каждому виду, по ликвационным полоскам не более 1 балла, неметаллические включения по сульфидам, оксидам точечным, оксидам строчечным, силикатам хрупким, силикатам пластичным, силикатам недеформированным не более 4,0 баллов по каждому виду включений, временное сопротивление разрыву не менее 415 Н/мм2, предел текучести не менее 241 Н/мм2, относительное удлинение не менее 20%, относительное сужение не менее 50%, ударную вязкость KCU+20 не менее 25 Дж/см2.

2. Трубная заготовка по п.1, отличающаяся тем, что в качестве неизбежных примесей сталь дополнительно содержит, мас.%: мышьяк не более 0,03, олово не более 0,02, свинец не более 0,01, цинк не более 0,005, никель не более 0,25, сера не более 0,010, фосфор не более 0,015.

Документы, цитированные в отчете о поиске Патент 2009 года RU2343210C2

СПОСОБ ПРОИЗВОДСТВА БЕСШОВНЫХ ТРУБ ИЗ УГЛЕРОДИСТОЙ ИЛИ НИЗКОЛЕГИРОВАННОЙ СТАЛИ ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТИ 2002
  • Кузнецов В.Ю.
  • Лубе И.И.
  • Фролочкин В.В.
  • Печерица А.А.
  • Кузнецова Е.Я.
  • Анищенко В.В.
  • Столяров В.И.
  • Родионова И.Г.
  • Бакланова О.Н.
  • Шарапов А.А.
  • Реформатская И.И.
  • Рыбкин А.Н.
RU2221875C2
СТАЛЬ ПОВЫШЕННОЙ КОРРОЗИОННОЙ СТОЙКОСТИ И БЕСШОВНЫЕ ТРУБЫ, ВЫПОЛНЕННЫЕ ИЗ НЕЕ 2002
  • Кузнецов В.Ю.
  • Печерица А.А.
  • Кузнецова Е.Я.
  • Лубе И.И.
  • Фролочкин В.В.
  • Лашкуль Н.Н.
  • Уткин Ю.Н.
  • Родионова И.Г.
  • Бакланова О.Н.
  • Быков А.А.
  • Столяров В.И.
  • Реформатская И.И.
  • Порецкий С.В.
  • Рыбкин А.Н.
RU2243284C2
Сталь 1986
  • Бабаскин Юрий Захарович
  • Кутищев Сергей Митрофанович
  • Кирчу Иван Федорович
  • Дубенко Лариса Владимировна
  • Мустафаев Рустам Бабаевич
  • Алиев Идрис Пашаевич
  • Поджарский Бенцион Иосифович
  • Исаев Юрий Гасанович
  • Лаптев Василий Константинович
  • Кузнецов Вячеслав Федорович
  • Пчелкин Виктор Николаевич
  • Олейников Валерий Алексеевич
  • Акчурин Юрий Александрович
  • Пикинер Юрий Спиридонович
  • Сторчевой Валерий Васильевич
SU1397538A1
ДВУХФАЗНАЯ СТАЛЬ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 1995
  • Ку Джейянг
  • Хемраджани Рамеш Р.
RU2151214C1
СТАЛЬ 2002
  • Наконечный Анатолий Яковлевич
  • Хабибулин Д.М.
  • Платов С.И.
RU2223342C1
СПОСОБ ПРОИЗВОДСТВА БЕСШОВНЫХ ТРУБ ИЗ МАЛОУГЛЕРОДИСТОЙ СТАЛИ 2001
  • Кузнецов В.Ю.
  • Фролочкин В.В.
  • Лубе И.И.
  • Супонин А.Г.
  • Печерица А.А.
  • Кузнецова Е.Я.
  • Неклюдов И.В.
  • Анищенко В.В.
RU2210604C2

RU 2 343 210 C2

Авторы

Бобылев Михаил Викторович

Гонтарук Евгений Иванович

Лехтман Анатолий Адольфович

Угаров Андрей Алексеевич

Фомин Вячеслав Иванович

Шляхов Николай Александрович

Даты

2009-01-10Публикация

2006-12-25Подача