Изобретение относится к обогащению полезных ископаемых и может быть использовано как при переработке шламов текущей добычи сульфидных вкрапленных и сплошных полиметаллических и медно-цинковых руд.
Проблема извлечения цветных металлов из шламов текущей добычи сульфидных полиметаллических руд является весьма актуальной в связи с высокими содержаниями шламовых фракций в перерабатываемых рудах. Технические проблемы переработки шламов сульфидных полиметаллических и медно-цинковых руд общеизвестны и заключаются в следующем: неселективная агрегация, повышенная окисляемость, высокий механический вынос в пенный продукт, огромная удельная поверхность и как следствие многократное увеличение расхода флотационных реагентов и т.д. Перечисленные особенности не позволяют перерабатывать шламы полиметаллических и медно-цинковых руд по традиционным схемам и реагентным рецептурам.
Известны способы флотации сульфидных полиметаллических руд с подавлением сфалерита сульфатом цинка и цианида (А.с. СССР №107921, Кл. B03D 1/02, 1950); водорастворимым цианидом и сульфатом цинка (патент США №26660307, кл. 209-187, 1952). Однако при флотации по известным способам извлечение цинка в конечный концентрат из шламов сульфидных полиметаллических руд не превышает 40% при некондиционном его содержании (не более 45-50%).
Наиболее близким по технической сущности и достигаемому результату к предлагаемому является способ флотационного обогащения шламов, получаемых при отмывке сульфидных полиметаллических и медно-цинковых руд, включающий основную и контрольную флотации в присутствии изопропилэтилтиокарбамата и дибутилдитиофосфата аммония (Каковский И.А. и др. Цветные металлы, 1961, №8).
Недостатком известного способа является то, что извлечение цинка в одноименный концентрат из шламов текущей добычи сульфидных полиметаллических или медно-цинковых руд не превышает 45-50%, причем при переработке шламов горно-обогатительных полиметаллических комбинатов использование этого способа ухудшается из-за повышенной окисленности материала.
Техническая цель данного технического решения заключается в повышении эффективности и селективности процесса флотации текущей шламов, получаемых при отмывке сульфидных полиметаллических или медно-цинковых руд, за счет повышения извлечения меди и свинца в коллективный концентрат (либо меди в одноименный при переработке медно-цинковых руд), а цинка в одноименный концентрат с одновременным повышением его качества до товарного.
Поставленная цель достигается тем, что в способе флотационного обогащения шламов, получаемых при отмывке сульфидных полиметаллических или медно-цинковых руд, включающем основную и контрольную медно-свинцовую или медную флотации в присутствии изопропилэтилтиокарбамата, дибутилдитиофосфата аммония и вспенивателя МИБК, десорбцию коллективного концентрата в присутствии сернистого натрия и активированного угля, перечистной цикл пенного продукта после десорбции с получением коллективного медно-свинцового или медного концентрата, включающий основную медно-свинцовую флотацию, или медную и медно-свинцовую, или медную дофлотацию с введением модификатора, состоящего из смеси цианида, цинкового купороса и карбоксиметилцеллюлозы при операционном соотношении 2:4÷5:20÷30 и пооперационном соотношении 3÷5:1; 3÷5:1; 3÷5:1 соответственно, и цинковый цикл камерного продукта в присутствии извести, жидкого стекла и медного купороса с получением товарного цинкового концентрата.
В качестве исходного сырья могут быть использованы текущие шламы, получаемые при отмывке вкрапленных сульфидных полиметаллических или медно-цинковых руд, перерабатываемых по коллективной схеме.
В качестве исходного сырья могут быть использованы шламы, получаемые при отмывке сплошных полиметаллических или медно-цинковых руд, перерабатываемых по коллективно-селективной схеме.
Предложенный способ флотационного обогащения текущих шламов, получаемых при отмывке сульфидных полиметаллических или медно-цинковых руд, основан на повышении флотационной селективности в цикле основной и контрольной медно-свинцовой флотаций и резкое снижение взаимопотерь металлов.
На фиг.1 изображена технологическая схема способа флотационного обогащения шламов, получаемых при отмывке вкрапленных сульфидных полиметаллических или медно-цинковых руд.
На фиг.2 изображена технологическая схема способа флотационного обогащения шламов, получаемых при отмывке сплошных сульфидных полиметаллических или медно-цинковых руд.
На фиг.3 изображена технологическая схема способа флотационного обогащения шламов, получаемых при отмывке медно-цинковых руд.
Способ осуществляют следующим образом.
Исходное питание - шламы текущей добычи сульфидных вкрапленных полиметаллических или медно-цинковых руд одного из горно-обогатительных предприятий крупностью 90÷100% класса 44 мкм - поступает на коллективные основную и контрольную флотации, которые проводятся в присутствии собирателей изопропилэтилтиокарбамата (15÷50 г/т); дибутилдитиофосфата (30÷80 г/т); вспенивателя МИБК (1÷5 г/т). Пенный продукт после десорбции в присутствии сернистого натрия (0,5÷1,5 г/т) и активированного угля (2÷10 г/т) поступает на основную медно-свинцовую флотацию и медно-свинцовую дофлотацию с введением смеси цианида, цинкового купороса и карбоксиметилцеллюлозы при операционном соотношении 2:4÷5:20÷30 и пооперационном соотношении 3÷5:1; 3÷5:1; 3÷5:1 соответственно.
Исходное питание - шламы, получаемые при отмывке сплошных колчеданных полиметаллических руд. Переработка горной массы осуществляется по коллективно-селективной схеме с выведением в пенные продукты коллективного медно-свинцового концентрата, а камерный продукт поступает в стандартный цинковый цикл с введением извести, жидкого стекла и медного купороса в качестве модификаторов с получением товарного цинкового концентрата.
Исходное питание - шламы, получаемые при отмывке медно-цинковых руд. Переработка горной массы осуществляется по перечисленным выше схемам для вкрапленных и сплошных полиметаллических руд. Отличие заключается в получении пенным продуктом не коллективного медно-свинцового концентрата, а не посредственно чернового медного концентрата, цинковый концентрат получается по обычной схеме из камерного продукта медного цикла.
Как показали результаты, только такое сочетание реагентов и их соотношение позволяет эффективно депрессировать минералы цинка при эффективном выделении в пенный продукт минералов меди и свинца. Камерный продукт поступает в стандартный цинковый цикл с подачей реагентов: извести, жидкого стекла и медного купороса в качестве модификаторов с получением товарного цинкового концентрата.
Способ поясняется примерами конкретного осуществления.
Постоянные условия:
1. Исходное питание - шламы вкрапленных сульфидных
полиметаллических руд
Пример 1 (по способу прототипа).
Исходное питание - шламы вкрапленных сульфидных полиметаллических руд подвергают флотационной переработке по схеме фиг.1 с реагентным режимом, приведенным в постоянных условиях (см. выше) и в таблице.
Пример 2 (по предложенному способу).
Исходное питание - шламы вкрапленных сульфидных полиметаллических руд подвергают флотационной переработке по схеме фиг.1 с реагентным режимом, приведенным в постоянных условиях. В операциях медно-свинцовой основной и медно-свинцовой дофлотации вводится смесь цианида, цинкового купороса и карбоксиметилцеллюлозы при операционном соотношении 2:4:20 и пооперационном соотношении 3:1; 3:1; 3:1 соответственно.
Пример 3 (по предложенному способу).
Исходное питание - шламы вкрапленных сульфидных полиметаллических руд подвергают флотационной переработке по схеме фиг.1 с реагентным режимом, приведенным в постоянных условиях. В операциях медно-свинцовой основной и медно-свинцовой дофлотации вводится смесь цианида, цинкового купороса и карбоксиметилцеллюлозы при операционном соотношении 2:5:20 и пооперационном соотношении 3:1; 3:1; 4:1 соответственно.
Пример 4 (по предложенному способу).
Исходное питание - шламы вкрапленных сульфидных полиметаллических руд подвергают флотационной переработке по схеме фиг.1 с реагентным режимом, приведенным в постоянных условиях. В операциях медно-свинцовой основной и медно-свинцовой дофлотации вводится смесь цианида, цинкового купороса и карбоксиметилцеллюлозы при операционном соотношении 1:5:30 и пооперационном соотношении 5:1; 5:1; 5:1 соответственно.
II. Исходное питание - шламы сплошных сульфидных полиметаллических руд
Пример 1 (по способу прототипа).
Исходное питание - шламы сплошных сульфидных полиметаллических руд подвергают флотационной переработке по схеме фиг.2 с реагентным режимом, приведенным в постоянных условиях и в табл.2.
Пример 2 (по предложенному способу).
Исходное питание - шламы сплошных сульфидных полиметаллических руд подвергают флотационной переработке по схеме фиг.2 с реагентным режимом, приведенным в постоянных условиях. В операциях медно-свинцовой основной и медно-свинцовой дофлотации вводится смесь цианида, цинкового купороса и карбоксиметилцеллюлозы при операционном соотношении 2:4:25 и пооперационном соотношении 4:1; 4:1; 4:1 соответственно.
Пример 3 (по предложенному способу).
Исходное питание - шламы сплошных сульфидных полиметаллических руд подвергают флотационной переработке по схеме фиг.2 с реагентным режимом, приведенным в постоянных условиях. В операциях медно-свинцовой основной и медно-свинцовой дофлотации вводится смесь цианида, цинкового купороса и карбоксиметилцеллюлозы при операционном соотношении 2:5:20 и пооперационном соотношении 3:1; 3:1; 4:1 соответственно.
Пример 4 (по предложенному способу).
Исходное питание - шламы сплошных сульфидных полиметаллических руд подвергают флотационной переработке по схеме фиг.2 с реагентным режимом, приведенным в постоянных условиях. В операциях медно-свинцовой основной и медно-свинцовой дофлотации вводится смесь цианида, цинкового купороса и карбоксиметилцеллюлозы при операционном соотношении 1:5:30 и пооперационном соотношении 2:1; 3:1; 4:1 соответственно.
Пример 5 (по предложенному способу).
Исходное питание - шламы сплошных сульфидных полиметаллических руд подвергают флотационной переработке по схеме фиг.2 с реагентным режимом, приведенным в постоянных условиях. В операциях медно-свинцовой основной и медно-свинцовой дофлотации вводится смесь цианида, цинкового купороса и карбоксиметилцеллюлозы при операционном соотношении 2:4:20 и пооперационном соотношении 5:1; 3:1; 3:1 соответственно.
III. Исходное питание-шламы медно-цинковых руд
Шламы медно-цинковых руд подвергают флотационной переработке по схеме фиг.3 с реагентным режимом, приведенным в постоянных условиях.
Пример 1 (по способу прототипа).
Исходное питание - шламы медно-цинковых руд подвергают флотационной переработке по схеме фиг.3 с реагентным режимом, приведенным в постоянных условиях и в табл.3.
Пример 2 (по предложенному способу).
Исходное питание - шламы медно-цинковых руд подвергают флотационной переработке по схеме фиг.3 с реагентным режимом, приведенным в постоянных условиях. В операциях медной вводится смесь цианида, цинкового купороса и карбоксиметилцеллюлозы при операционном соотношении 2:4:30 и пооперационном соотношении 3:1; 3:1; 4:1 соответственно.
Пример 3 (по предложенному способу).
Исходное питание - шламы медно-цинковых руд подвергают флотационной переработке по схеме фиг.3 с реагентным режимом, приведенным в постоянных условиях. В операциях медной флотации вводится смесь цианида, цинкового купороса и карбоксиметилцеллюлозы при операционном соотношении 1:5:20 и пооперационном соотношении 5:1; 4:1; 4:1 соответственно.
Пример 4 (по предложенному способу).
Исходное питание - шламы медно-цинковых руд подвергают флотационной переработке по схеме фиг.3 с реагентным режимом, приведенным в постоянных условиях. В операциях медной флотации вводится смесь цианида, цинкового купороса и карбоксиметилцеллюлозы при операционном соотношении 2:4:20 и пооперационном соотношении 3:1; 3:1; 5:1 соответственно.
Пример 5 (по предложенному способу).
Исходное питание - шламы медно-цинковых руд подвергают флотационной переработке по схеме фиг.3 с реагентным режимом, приведенным в постоянных условиях. В операциях медной флотации вводится смесь цианида, цинкового купороса и карбоксиметилцеллюлозы при операционном соотношении 2:4:25 и пооперационном соотношении 4:1; 4:1; 5:1 соответственно.
Как показали проведенные исследования, только такое сочетание операций флотации и соответствующих реагентных режимов позволяет осуществить селекцию медных и цинковых минералов. При переработке по этим схемам получаются черновые цинковые концентраты с содержанием цинка не менее 40% и медный концентрат, пригодный для подшихтовки к технологическим продуктам схемы переработки рядовой руды.
Таким образом, для повышения эффективности и селективности процесса флотационной переработки шламов текущей добычи медно-цинковых руд горно-обогатительных предприятий необходимо одновременное совместное использование флотационных переделов: основного медно-свинцового и дофлотации в оптимальных режимах с введением смеси цианида, цинкового купороса и карбоксиметилцеллюлозы при операционном соотношении 2:4÷5:20÷30 и пооперационном соотношении 3÷5:1; 3÷5:1; 3÷5:1 соответственно.
Сводные показатели флотационной переработки шламов текущей добычи сульфидных полиметаллических или медно-цинковых руд однозначно показали, что использование предложенного способа по сравнению с прототипом позволяет:
- повысить извлечение цинка в одноименный концентрат на 10÷15%, при этом качество полученного цинкового концентрата не ниже 53%, т.е. до качества товарного концентрата;
- получить коллективный медно-свинцовый концентрат с извлечением меди от 80 до 92%, пригодный для присоединения к технологическим продуктам схемы флотации отмытой руды;
- повысить эффективность и селективность процесса флотации текущих шламов, получаемых при отмывке сульфидных полиметаллических или медно-цинковых руд.
Расход бутилового ксантонгената 200 г/т
Соды 6000 г/т
МИБК 160 г/т
Соотношение 1:30:0,8
Расход бутил, ксантонгената 200 г/т
Соды 6000 г/т
МИБК 160 г/т
Соотношение 1:30:0,8
Расход бутил, ксантонгената 200 г/т
Соды 6000 г/т
МИБК 160 г/т
Соотношение 1:30:0,8
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ ЛЕЖАЛЫХ ШЛАМОВ СУЛЬФИДНЫХ ПОЛИМЕТАЛЛИЧЕСКИХ ИЛИ МЕДНО-ЦИНКОВЫХ РУД | 2007 |
|
RU2343986C1 |
СПОСОБ ФЛОТАЦИОННОГО ИЗВЛЕЧЕНИЯ ЦВЕТНЫХ И БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ ХВОСТОВ ОБОГАЩЕНИЯ ОЛОВЯННЫХ РУД | 2022 |
|
RU2806381C1 |
СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ ПОЛИМЕТАЛЛИЧЕСКИХ РУД | 2015 |
|
RU2588093C1 |
СПОСОБ ФЛОТАЦИОННОГО РАЗДЕЛЕНИЯ КОЛЛЕКТИВНОГО МЕДНО-СВИНЦОВОГО КОНЦЕНТРАТА | 2015 |
|
RU2588088C1 |
СПОСОБ ФЛОТАЦИОННОГО РАЗДЕЛЕНИЯ КОЛЛЕКТИВНЫХ МЕДНО-СВИНЦОВЫХ КОНЦЕНТРАТОВ | 2015 |
|
RU2586510C1 |
СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ СУЛЬФИДНЫХ РУД | 2015 |
|
RU2588090C1 |
СПОСОБ ФЛОТАЦИИ СУЛЬФИДНЫХ МИНЕРАЛОВ ЦИНКА | 2015 |
|
RU2588098C1 |
СПОСОБ ФЛОТАЦИОННОГО РАЗДЕЛЕНИЯ КОЛЛЕКТИВНЫХ ЦИНКОВО-ПИРИТНЫХ КОНЦЕНТРАТОВ | 2015 |
|
RU2595022C1 |
СПОСОБ ФЛОТАЦИИ ПОЛИМЕТАЛЛИЧЕСКИХ ЗОЛОТОСОДЕРЖАЩИХ РУД | 2005 |
|
RU2280509C1 |
СПОСОБ ФЛОТАЦИИ ПОЛИМЕТАЛЛИЧЕСКИХ РУД | 1990 |
|
RU2024321C1 |
Изобретение относится к обогащению полезных ископаемых и может быть использовано при переработке шламов текущей добычи сульфидных вкрапленных и сплошных полиметаллических или медно-цинковых руд. Способ флотационного обогащения текущих шламов, получаемых при отмывке сульфидных полиметаллических или медно-цинковых руд, включает основную и контрольную медно-свинцовую или медную флотации в присутствии изопропилэтилтиокарбамата, дибутилдитиофосфата аммония и вспенивателя МИБК, десорбцию коллективного концентрата в присутствии сернистого натрия и активированного угля. Перечистной цикл пенного продукта после десорбции с получением коллективного медно-свинцового или медного концентрата включает основную медно-свинцовую флотацию или медную и медно-свинцовую или медную дофлотацию с введением модификатора, состоящего из смеси цианида, цинкового купороса и карбоксиметилцеллюлозы при операционном соотношении 2:4÷5:20÷30 и пооперационном соотношении 3÷5:1; 3÷5:1; 3÷5:1 соответственно. Также способ включает цинковый цикл камерного продукта, в присутствии извести, жидкого стекла и медного купороса с получением товарного цинкового концентрата. Технический результат - повышение эффективности флотации. 2 з.п. ф-лы, 3 ил., 3 табл.
RU 2055646 C1, 10.03.1996 | |||
Способ разделения медно-цинковых концентратов | 1982 |
|
SU1092795A1 |
СПОСОБ ФЛОТАЦИИ ПОЛИМЕТАЛЛИЧЕСКИХ РУД | 1990 |
|
RU2024321C1 |
Релейный распределитель | 1985 |
|
SU1265876A1 |
ПОЛЬКИН С.И | |||
и др | |||
Обогащение руд цветных металлов | |||
- М.: Недра, 1983, с.125-159 | |||
АБРАМОВ А.А | |||
и др | |||
Обогащение руд цветных металлов | |||
- М.: Недра, 1991, с.286-298 | |||
КАКОВСКИЙ И.А | |||
и др | |||
Связь между флотируемостью минеральных частиц различной |
Авторы
Даты
2009-01-20—Публикация
2007-04-04—Подача