БИОМОДИФИКАТОР ДЛЯ ОПРЕДЕЛЕНИЯ ФЕНОЛА И ЕГО ПРОИЗВОДНЫХ Российский патент 2009 года по МПК C12Q1/00 G01N27/00 

Описание патента на изобретение RU2346051C2

Изобретение относится к области ферментативного анализа и может быть использовано для определения легколетучих соединений фенольной природы в газовых смесях с применением сенсорных устройств.

Известны модификаторы для обработки электродов сенсоров, в частности растворы поливинилпирролидона и динонилфталата, пчелиный воск, полиэтиленгликоль адипинат (см. патент РФ №2205391, МПК G01N 27/00); 1,2,3-трис-β-цианэтоксипропан (см. патент РФ №2184956, МПК G01N 27/12).

Данные вещества не удовлетворяют экологическим требованиям, не обеспечивают высокой скорости сорбции и десорбции и продолжительного времени жизни сенсора на их основе.

Наиболее близким к предлагаемому решению является фермент для определения фенолов, представляющий собой пероксидазу из штамма Phellinus igniarius ВКПМ F-686, который можно рассматривать как биомодификатор (см. патент РФ №2073723, МПК C12Q 1/00).

Однако данный фермент не предназначен для нанесения на электроды сенсоров в силу неустойчивости веществ ферментной природы. Кроме того, данный фермент дорогостоящий вследствие сложной технологии его получения из-за необходимости выделения и очистки ферментов грибов.

Изобретение направлено на решение задачи повышения чувствительности и устойчивости биомодификатора при анализе летучих соединений фенольной природы в газовых смесях при соблюдении экологических требований.

Поставленная задача решается тем, что в биомодификаторе для определения фенола и его производных, содержащем биологически активный агент, согласно предлагаемому решению в качестве активного агента выбрана ацетоновая суспензия из мицелиальной биомассы высшего съедобного гриба, содержащего полифенолоксидазу в количестве 5-10 мг/г сырой биомассы, закрепленная в полимерной матрице, в качестве материала для которой выбран Тритон Х-100, для нанесения на электрод масс-метрического преобразователя сенсорного устройства, при этом содержание активного агента в полимерной матрице составляет 10 мас.%.

При этом в качестве гриба может быть выбран Pleurotus ostreatus или Lentinus edodes или Flammulina velutipes.

Способ осуществляется следующим образом.

Мицелиальную биомассу получают путем глубинного культивирования, в качестве питательной среды используют картофельно-пшеничную, в качестве суспендирующего вещества используют ацетон, биомодификатор сенсорного устройства формируют путем приготовления суспензий из мицелиальной биомассы, которые смешивают с полимерной матрицей. Затем осуществляют парофазную модификацию электродов масс-метрических преобразователей сенсорных устройств.

В качестве полимерной матрицы для суспензии из мицелия применяли Тритон X-100, полистирол, поливинилпирролидон, пчелиный клей. Пленки сорбентов формировали по различным методикам: послойное и смешанное нанесение растворов, в качестве растворителей полимера и суспендирующего вещества для обработки мицелия применяли этиловый спирт или ацетон.

При составлении матрицы планирования для изучения сорбции паров фенола в системах: полистирол - суспензия из вешенки, поливинилпираллидон - суспензия из вешенки, пчелиный клей - суспензия из вешенки, Тритон Х-100 - суспензия из вешенки, применяли многофакторный эксперимент двухуровневого планирования с числом опытов 23.

Полимерная основа (матрица) из раствора пчелиного клея нежелательна вследствие высокой ошибки определения, что обусловлено сложной биологической структурой модификатора и неизученностью механизма реакций, возможных при смешивании раствора прополиса с суспензией из вешенки. Применение полистирола в качестве полимерной основы вешенки нежелательно вследствие низкой чувствительности смешанного биосенсора к фенолу, что возможно связано с внутренним блокированием активных центров сорбции полистирола (π - электронное облако бензольного кольца) ферментами суспензии из вешенки. Применение поливинилпирролидона в качестве основы смешанного сорбента вызывает значительные ошибки эксперимента, что обусловлено высокой сорбционной активностью индивидуального полимера (полярная неподвижная фаза в газовой хроматографии).

При выборе оптимального растворителя полимерного модификатора установлено, что с увеличением полярности растворителя (от ацетона к спирту) растет число взаимодействий между молекулами растворителя и активными группами модификатора, за счет чего уменьшается доля водородных связей при сорбции фенола. Оптимальным растворителем Тритона Х-100 является ацетон.

При выборе способа обработки мицелиальной биомассы установлено, что оптимальным является получение не экстрактов, а суспензий из мицелия вешенки. Приготовление экстрактов - более трудоемкий, материалоемкий и длительный процесс по сравнению с получением суспензии, поскольку экстрагирование подразумевает стадию фильтрации, а при приготовлении суспензий эта часть процесса исключается из технологии подготовки биомодификатора. Кроме того, при экстрагировании менее полно сохраняются важные для технологии приготовления биомодификатора вещества из вешенки.

Суспендирующим веществом для мицелия вешенки выбран ацетон, что объясняется полным извлечением необходимого фермента, чувствительного к фенолу, в ацетоновую суспензию. Извлечение и суспендирование ферментов вешенки спиртом приводит к уменьшению чувствительности при определениях фенола, что, возможно, вызвано ухудшением условий извлечения активных белков в плане использования менее подходящего суспендирующего агента, и, одновременно, более выраженным растворением хитина и образованием хитинглюканового комплекса, подавляющего сорбцию фенола. На стадии формирования биомодификатора электродов отказались от воды для извлечения ферментов вешенки вследствие нестабильности и значительного дрейфа "нулевого" сигнала (до 30-40 Гц/мин).

Для всех систем смешанное нанесение модификаторов наиболее предпочтительно, так как при таком формировании рецепторной пленки (биомодификатора) фенол в равной степени сорбируется на поверхности ферментов вешенки и на активных центрах полимера, которые распределяются по поверхности сорбции равномерно.

Пример. Выращивали культуру Pleurotus ostreatus на чашках Петри с агаризованным пивным суслом (3-4 градуса по Баллингу), рН 6-6,5. Температура 26 град. В качестве инокулята жидкой среды используют блоки агаризованной среды с культурой. Инкубируют в термостате при 26 градусах в течение 7-14 суток. Извлечение и суспендирование биологически активных веществ из мицелия проводили путем обработки воздушно-сухого мицелия ацетоном в течение 48 ч при температуре 20-25°С (для полного извлечения биологически-активных веществ с поверхности клеток). В результате такой обработки через 48 ч получают двухфазную дисперсную систему, в данном случае суспензию, в которой дисперсная фаза (фермент) распределена в виде мелких частиц в дисперсионной среде. Из полученной суспензии микрошприцем отбирали 5-10 мкл биологически активной жидкости и наносили на электроды пьезорезонатора (кристалл AT - среза, с собственной частотой колебаний 8-10 МГц). Сенсор сушили в эксикаторе при температуре ≤25°С во избежание изменений активности биомодификатора. Для стабилизации модификатора полученную суспензию закрепляли в полимерной матрице, для чего готовили смесь суспензии из вешенки и полимерных сорбентов природного и искусственного происхождения (оптимальная массовая доля суспензии вешенки 10 мас.%). Оптимальным сорбентом оказался ТХ-100. Затем формировали рецепторный слой на электродах пьезорезонатора путем нанесения указанной смеси (суспензия-сорбент). Сформированный таким способом смешанный биосенсор сохраняет свои характеристики 3-4 месяца по показателю интенсивности сорбции фенола и его гомологов на пленке смешанного биомодификатора. Чувствительность смешанного биосенсора к парам фенола выше, чем сенсора на основе Тритона Х-100 и сенсора на основе суспензии из мицелия вешенки:

ПленкаМасса пленки, мкгЧувствительность, S, Гц·м3/мгТритон Х-1004,06730Суспензия из вешенки5,05810Смешанная пленка6,081200

Для сенсора характерно быстрое время опроса (25-30 с), практически мгновенная десорбция при принудительном продувании ячейки с сенсором осушенным лабораторным воздухом. Самопроизвольная десорбция происходит в течение 2-3 мин, что объясняется непрочностью водородных связей, образованных с соединениями мицелия вешенки, в то время как десорбция с пленки Тритона Х-100 протекает в течение 5-10 мин. Оптимальная масса смешанной биопленки 10-25 мкг, объем вводимой пробы 3 см3, режим сорбции - стационарный с инжекторным вводом.

Оптимальная доля биологической суспензии составляет 10 мас.% (при уменьшении массовой доли суспензии из вешенки в пленке до 2 - 8 мас.% происходит значительное уменьшение аналитического сигнала и, как следствие, - чувствительности микровзвешивания паров фенола). При увеличении массовой доли суспензии от 10 мас.% до 50 мас.% время опроса увеличивается от 30 с до 80 с, а при массовой доле суспензии 90 мас.% - до 230 с, при этом чувствительность микровзвешивания остается постоянной.

По чувствительности сенсор на основе смеси Тритона Х-100 и суспензии из вешенки превосходит большинство ранее рекомендованных систем. Неоспоримая высокая скорость сорбции и десорбции (по сравнению с поливинилпироллидоном, краун-эфиром и т.д.) и возможность многократного применения с временем жизни до 3-4 месяцев делает предпочтительным применение в серийных экспериментах сенсор на основе биомодификатора. Новый модификатор электродов пьезосенсора характеризуется высокой чувствительностью к парам фенола в газовой фазе, быстрым временем опроса, допустимой погрешностью определения и может быть включен в матрицу сенсоров при анализе многокомпонентных смесей, содержащих фенолы.

Модификатор является экологически чистым. Изобретение позволяет при использовании мицелия высших культивируемых грибов в газовых сенсорах создавать сенсорные устройства с использованием экологически чистых технологий и с высокими конкурентоспособными свойствами за счет упрощения, удешевления процедуры получения и повышения устойчивости модификатора.

Похожие патенты RU2346051C2

название год авторы номер документа
СПОСОБ СОЗДАНИЯ БИОСЕНСОРА ДЛЯ ОПРЕДЕЛЕНИЯ ПАРОВ ФЕНОЛА В ВОЗДУХЕ 2004
  • Силина Юлия Евгеньевна
  • Коренман Яков Израильевич
  • Кучменко Татьяна Анатольевна
  • Цивелева Ольга Михайловна
RU2277125C2
СПОСОБ ТЕСТ-ИДЕНТИФИКАЦИИ МНОГОКОМПОНЕНТНЫХ ГАЗОВЫХ СМЕСЕЙ БЕНЗОЛА, ТОЛУОЛА, ФЕНОЛА, ФОРМАЛЬДЕГИДА, АЦЕТОНА И АММИАКА 2011
  • Силина Юлия Евгеньевна
  • Кучменко Татьяна Анатольевна
  • Шогенов Юрий Хажсетович
RU2456590C1
Субстрат для выращивания посевного мицелия съедобного гриба вешенки обыкновенной (Pleurotus ostreatus) 2021
  • Мягкова Анастасия Сергеевна
  • Глазунова Анастасия Валерьевна
  • Песцов Георгий Вячеславович
  • Сидоров Роман Александрович
RU2771673C1
СПОСОБ ПРИГОТОВЛЕНИЯ ЖИДКОФАЗНОЙ ФОРМЫ МАТОЧНОГО МИЦЕЛИЯ ДЛЯ ПОЛУЧЕНИЯ ПЛОДОВЫХ ТЕЛ ШЛЯПОЧНЫХ ПЛАСТИНЧАТЫХ ГРИБОВ 2015
  • Копыльцов Сергей Васильевич
  • Кощаев Андрей Георгиевич
  • Пономарева Юлия Владимировна
RU2610707C1
СПОСОБ ПОЛУЧЕНИЯ ПИЩЕВЫХ ВОЛОКОН 2008
  • Попов Владимир Олегович
  • Терёшина Вера Михайловна
  • Меморская Анна Сергеевна
  • Феофилова Елена Петровна
  • Королёва Ольга Владимировна
  • Гальченко Валерий Фёдорович
RU2393228C2
Культивирование посевного мицелия гриба Pleurotus ostreatus (вешенки обыкновенной) c использованием сырой пивной дробины - отхода пивоваренной промышленности 2019
  • Глазунова Анастасия Валерьевна
  • Песцов Георгий Вячеславович
  • Сидоров Роман Александрович
RU2732832C1
СПОСОБ ОПРЕДЕЛЕНИЯ АКТИВНОСТИ ЛАККАЗЫ БАЗИДИАЛЬНЫХ ГРИБОВ 2005
  • Иванов Геннадий Иванович
  • Копыльцов Сергей Васильевич
RU2295728C2
СПОСОБ ПОЛУЧЕНИЯ ПИЩЕВОГО БИОСОРБЕНТА 2002
  • Колесникова В.Ф.
  • Колесников В.И.
RU2219997C2
СПОСОБ ТВЕРДОФАЗНОГО КУЛЬТИВИРОВАНИЯ ВЫСШИХ БАЗИДИАЛЬНЫХ ГРИБОВ 1992
  • Даниляк Николай Ильич[Ua]
  • Решетников Сергей Васильевич[Ua]
  • Трутнева Ирина Анатольевна[Ua]
RU2096450C1
ПОСЕВНОЙ МИЦЕЛИЙ БАЗИДИОМИЦЕТА И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2009
  • Краснопольская Лариса Михайловна
  • Автономова Анастасия Витальевна
  • Леонтьева Мария Ильинична
RU2430155C1

Реферат патента 2009 года БИОМОДИФИКАТОР ДЛЯ ОПРЕДЕЛЕНИЯ ФЕНОЛА И ЕГО ПРОИЗВОДНЫХ

Изобретение относится к области биотехнологии и может быть использовано для определения легколетучих соединений фенольной природы в газовых смесях с применением сенсорных устройств. Биомодификатор содержит биологически активный агент, в качестве которого выбрана ацетоновая суспензия из мицелиальной биомассы высшего съедобного гриба, содержащего полифенолоксидазу в количестве 5-10 мг/г сырой биомассы, закрепленная в полимерной матрице для нанесения на электрод масс-метрического преобразователя. В качестве гриба могут быть выбраны Pleurotus ostreatus, Lentinus edodes, Flammulina velutipes. В качестве материала для полимерной матрицы может быть выбран Тритон Х-100, при этом содержание активного агента в полимерной матрице составляет 9-15 мас.%. Изобретение позволяет повысить чувствительность, скорость сорбции и десорбции и обеспечивает возможность многократного применения биокатализатора с временем жизни до 3-4 месяцев, быстрое время опроса (25-30 с), допустимую погрешность определения, возможность включения в матрицу сенсоров при анализе многокомпонентных смесей, содержащих фенолы. 3 з.п.лы.ф-лы.

Формула изобретения RU 2 346 051 C2

1. Биомодификатор для определения фенола и его производных, содержащий биологически активный агент, отличающийся тем, что в качестве активного агента выбрана ацетоновая суспензия из мицелиальной биомассы высшего съедобного гриба, содержащего полифенолоксидазу в количестве 5-10 мг/г сырой биомассы, закрепленная в полимерной матрице в качестве материала для которой выбран Тритон Х-100, для нанесения на электрод масс-метрического преобразователя сенсорного устройства, при этом содержание активного агента в полимерной матрице составляет 10 мас.%.2. Биомодификатор по п.1, отличающийся тем, что в качестве гриба выбран Pleurotus ostreatus.3. Биомодификатор по п.1, отличающийся тем, что в качестве гриба выбран Lentinus edodes.4. Биомодификатор по п.1, отличающийся тем, что в качестве гриба выбран Flammulina velutipes.

Документы, цитированные в отчете о поиске Патент 2009 года RU2346051C2

СПОСОБ СОЗДАНИЯ БИОСЕНСОРА ДЛЯ ОПРЕДЕЛЕНИЯ ПАРОВ ФЕНОЛА В ВОЗДУХЕ 2004
  • Силина Юлия Евгеньевна
  • Коренман Яков Израильевич
  • Кучменко Татьяна Анатольевна
  • Цивелева Ольга Михайловна
RU2277125C2
КУЧМЕНКО Т.А
и др
Применение пьезокварцевых резонаторов для изучения сорбции паров легколетучих органических соединений
- Сенсор, №2, 2002, с.17-22
Вешенка в роли сенсора, найдено в Интернете: http:www.radiomayak.ru/archive/text?stream=schedules/11826&item=24681, 28.03.2006
ЕРМОЛАЕВА Т.Н
и др
Чувствительный

RU 2 346 051 C2

Авторы

Цивилева Ольга Михайловна

Никитина Валентина Евгеньевна

Кучменко Татьяна Анатольевна

Силина Юлия Евгеньевна

Панкратов Алексей Николаевич

Даты

2009-02-10Публикация

2007-02-26Подача