Изобретение относится к способам получения оксида галлия для использования при изготовлении специальной керамики, керамических покрытий и сложных оксидных соединений, используемых в оптике.
Известен способ получения оксида галлия, включающий растворение технического галлия марки Гл-1 в 30% щавелевой кислоте марки ХЧ при нагревании до 100°С. Растворение ведут в течение 6 часов при перемешивании и поддержании постоянным уровня раствора. Затем раствор фильтруют, упаривают досуха и прокаливают в муфельной печи и в течение 3 часов при температуре 800°С. Полученный оксид галлия имел следующий примесный состав, % масс.: Cu 1·10-4, Ni 1·10-4, Fe 5·10-4, Al 5·10-4, SO4 и NO3 не обнаружены.
Такой оксид галлия соответствует марке ОСЧ. (См. а.с. СССР №916404, C01G 15/00, опубл. 30.03.82 г.)
Преимуществом способа является то, что из технического галлия получают оксид галлия марки ОСЧ.
Недостатком способа является многостадийность процесса, высокие энергозатраты.
Известен способ получения оксида галлия путем взаимодействия металлического галлия с водой в автоклаве при температуре свыше 200°С при давлении 200-300 бар с получением гидроокиси галлия и его последующей прокалкой. (См. патент ФРГ №2517292, С01G 15/00, 1976 г.).
Недостатками способа являются сложное аппаратурное оформление процесса, невозможность получения оксида галлия высокой чистоты из-за загрязнения оксида контейнерным материалом автоклава.
Известен автогенный процесс получения оксидных соединений редких, рассеянных металлов, в том числе и оксидов галлия, процесс самораспространяющегося высокотемпературного синтеза, СВС.
Сущность процесса заключается в следующем.
Смешивают металл с его оксидом и в токе кислородсодержащего газа поджигают. В точке поджига образуется высокая температура и за счет экзотермического характера взаимодействия компонентов процесс окисления самораспространяется по объему материала, не требуя подачи энергии извне.
Известен способ получения композиционных оксидных соединений редких, рассеянных металлов, в том числе содержащих оксид галлия, высокотемпературным самораспространяющимся синтезом. («Физико-химические и технологические основы самораспространяющегося высокотемпературного синтеза.» ГРИФ УМО МО РФ. Левашов Е.А., Рогачев А.С., Юхвид В.И., Изд. «Бином», 1999 г.).
Способ заключается в смешивании оксидов лантана, кремния и галлия с металлическим галлием с последующим локальным кратковременным нагревом в кислородсодержащей среде до начала протекания реакции самораспространяющегося высокотемпературного синтеза в режиме горения.
В данном способе в результате реакции СВС происходит окисление металлического галлия до образования оксида галлия, который связывает в сложный композиционный шихтовой материал лангасит, оксид лантана, оксид кремния, оксид галлия в заданном стехиометрическом составе. (См. патент РФ №2126063, С30В 29/34, опубл. 1999 г.).
Недостатком такого способа окисления галлия является неполнота окисления галлия. Для устранения этого недостатка требуется дополнительная термообработка синтезированного материала.
Известен способ получения ультрадисперсного оксида галлия с использованием метода самораспространяющегося высокотемпературного синтеза. (См. Тезисы докладов Всероссийской конференции «Керамика и композиционные материалы.) В источнике информации не приведены параметры процесса. Способ принят за прототип.
Техническим результатом изобретения является снижение остаточного содержания непрореагировавшего галлия, получение порошка оксида галлия с размером частиц менее 1 мкм и с выходом данной фракции не менее 85%.
Технический результат достигается тем, что в способе получения мелкодисперсного оксида галлия методом самораспространяющегося высокотемпературного синтеза, включающем смешение оксида галлия с металлическим галлием и окисление металлического галлия путем локального нагрева смеси в кислородсодержащем газе, согласно изобретению смешение оксида галлия с металлическим галлием проводят с введением порошка гидрооксида галлия в соотношении (1):(0,136-0,148):(0,047-0,059) соответственно.
Сущность изобретения заключается в проведении процесса СВС для получения мелкодисперсного оксида галлия с использованием в качестве исходных материалов смеси компонентов: оксид галлия, металлический галлий и порошкообразный гидрооксид галлия формулы GaO2H в определенном соотношении 1:(0,136-0,148):(0,047-0,059) соответственно.
Процесс СВС проходит в режиме горения за счет экзотермического эффекта реакции окисления галлия. Введение в исходную шихту для осуществления процесса СВС согласно изобретению нового компонента - гидрооксида галлия, обеспечивает новые термические условия взаимодействия компонентов шихты.
В процессе горения и окисления галлия одновременно происходит разложение гидрооксида галлия, а это процесс в отличие от процесса горения и окисления галлия является эндотермическим процессом. В этих условиях за счет выделения в газовую фазу воды осуществляется теплоотвод из зоны горения и при равномерном распределении компонентов в исходной смеси по объему достигается выравнивание температуры также во всем объеме реагируемых компонентов шихты с одновременным разрыхлением материала. Это приводит к двум положительным результатам - полному взаимодействию галлия с кислородом и к подавляющему образованию мелкодисперсного оксида галлия во всей зоне реакции.
В результате получают оксид галлия с содержанием металлического галлия <0,0001% и выход фракции с размером частиц менее 1 мкм более 85%.
Обоснование параметров.
При уменьшении нижнего предела 0,136 содержания расплавленного галлия снижается температура процесса и скорость окисления галлия, окисление осуществляется не полностью. При увеличении верхнего предела содержания расплавленного галлия более 0,148 диспергирование галлия ухудшается за счет уменьшения поверхности оксида галлия по отношению к объему металлического галлия, что приводит к увеличению металлического галлия в оксиде галлия.
При уменьшении нижнего предела 0,047 содержания гидрооксида галлия возрастает температурный градиент в объеме материала, возрастает локальная температура процесса СВС, что приводит к укрупнению фракционного состава оксида галлия и неполноте окисления галлия за счет ухудшения газопроницаемости смеси. При увеличении верхнего предела содержания гидрооксида галлия более 0,059 снижается температура процесса и скорость окисления галлия, окисление осуществляется не полностью, что приводит к увеличению металлического галлия в оксиде галлия.
Заявленное соотношение оксида галлия, галлия и гидрооксида галлия (1):(0,136-0,148):(0,047-0,059) соответственно позволяет получить ультрадисперсный порошок оксида галлия с высоким выходом фракции с размером частиц порошка менее 1 мкм и с остаточным содержанием галлия в получаемом оксиде галлия менее 1·10-4% масс.
Пример осуществления способа
В качестве исходных компонентов использовали оксид галлия и гидрооксид галлия (GaO2H) с содержанием основных компонентов не менее 99,99% по массе и размером фракций <1 мкм не менее 85% и металлический галлий чистотой 99,999% по массе.
Металлический галлий в количестве 272,2 г (0,136 частей) расплавляли и смешивали с 2000 г (1 частью) оксида галлия и 94,7 г (0,047 частями) гидрооксида галлия (GaO2H) на электромагнитном вибросмесителе в контейнере из органического стекла в течение 60 минут. Смесь засыпали слоем 6-8 сантиметров на кварцевую лодочку и загружали в реактор проточного типа. После подачи кислорода осуществляли локальный нагрев смеси с помощью нагревателя сопротивления до начала самопроизвольного распространения процесса горения в объеме смеси. Процесс заканчивали после прохождения горения по всему объему смеси и ее охлаждению до комнатной температуры. По окончании процесса готовый оксид галлия анализировали на содержание металлического галлия и дисперсный состав.
Результаты осуществления способа при различных значениях заявленных параметров представлены в таблице.
Таким образом, заявленное изобретение позволяет получить ультрадисперсный порошок оксида галлия высокого качества с содержанием металлического галлия менее 10-4%
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА ГАЛЛИЯ | 2007 |
|
RU2354611C1 |
СПОСОБ ПОЛУЧЕНИЯ ШИХТЫ ДЛЯ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ЛАНТАНГАЛЛИЕВОГО СИЛИКАТА | 1996 |
|
RU2126063C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ГАЛЛИЯ ИЗ ГАЛЛИЙСОДЕРЖАЩИХ ОКСИДОВ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ | 1998 |
|
RU2164259C2 |
СПОСОБ ПОЛУЧЕНИЯ ШИХТЫ ДЛЯ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ЛАНТАНГАЛЛИЕВОГО СИЛИКАТА | 1998 |
|
RU2156326C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ОБЪЕМНЫХ ИЗДЕЛИЙ ИЗ ПОРОШКОВЫХ КОМПОЗИЦИЙ | 2006 |
|
RU2333076C1 |
СПОСОБ ПОЛУЧЕНИЯ СЛОЖНЫХ ОКСИДНЫХ СОЕДИНЕНИЙ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ | 2010 |
|
RU2430884C1 |
СПОСОБ ПОЛУЧЕНИЯ ОТКРЫТОПОРИСТОГО НАНОСТРУКТУРНОГО НИКЕЛЯ | 2014 |
|
RU2578617C2 |
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ГИДРООЧИСТКИ ДИЗЕЛЬНОГО ТОПЛИВА | 2012 |
|
RU2491123C1 |
Способ легирования отливок | 2015 |
|
RU2630990C2 |
СПОСОБ ПОЛУЧЕНИЯ ШИХТЫ ДЛЯ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ НА ОСНОВЕ ОКСИДОВ РЕДКОЗЕМЕЛЬНЫХ, РАССЕЯННЫХ И ТУГОПЛАВКИХ МЕТАЛЛОВ ИЛИ КРЕМНИЯ | 2005 |
|
RU2296824C1 |
Изобретение может быть использовано в химической промышленности. Ультрадисперсный оксид галлия получают методом самораспространяющегося высокотемпературного синтеза. При этом оксид галлия смешивают с металлическим галлием, с введением в смесь порошка гидрооксида галлия в соотношении 1:(0,136-0,148):(0,047-0,059) соответственно. Окисление металлического галлия проводят путем локального нагрева смеси в кислородсодержащем газе. Заявленное изобретение позволяет получить порошок оксида галлия высокого качества с размером частиц менее 1 мкм и с выходом данной фракции не менее 85%, с содержанием металлического галлия менее 10-4. 1 табл.
Способ получения ультрадисперсного оксида галлия методом самораспространяющегося высокотемпературного синтеза, включающий смешение оксида галлия с металлическим галлием и окисление металлического галлия путем локального нагрева смеси в кислородсодержащем газе, отличающийся тем, что смешение оксида галлия с металлическим галлием проводят с введением порошка гидрооксида галлия в соотношении 1:(0,136-0,148):(0,047-0,059) соответственно.
Способ получения высокодисперсного оксида металла | 1990 |
|
SU1745679A1 |
СПОСОБ ПОЛУЧЕНИЯ ШИХТЫ ДЛЯ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ЛАНТАНГАЛЛИЕВОГО СИЛИКАТА | 1996 |
|
RU2126063C1 |
US 4351821 А, 28.09.1982 | |||
JP 2002003298 А, 09.01.2002 | |||
JP 2000313696 А, 14.11.2000. |
Авторы
Даты
2009-03-20—Публикация
2007-08-03—Подача