СЕЛЕКТИВНЫЙ НАНОФИЛЬТР И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ Российский патент 2009 года по МПК B01D69/12 B01D71/02 B82B3/00 

Описание патента на изобретение RU2351389C1

Изобретение относится к области нанотехнологии и может быть использовано при создании химических нанофильтров, представляющих собой мембраны, смонтированные на каркасе, обеспечивающем механическую прочность мембраны как нанопористого функционального элемента. В частности, изобретение рассматривает конструкцию селективного нанофильтра на основе металлической пленки и нанопористой мембраны, обладающего высокой селективной газовой проницаемостью металлов (например, палладия или никеля для водорода).

Известно устройство, представляющее механически прочную систему пористая мембрана - пористая подложка (US №7108813, В29С 65/00, B01D 39/00, В44С 1/22, опубл. 19.09.2006).

Недостатком данной двухслойной мембраны является то, что при обеспечении прочности системы в целом она имеет пропускную способность, равную пропускной способности пор в подложке.

Известны устройства, представляющие собой двухслойные пористые системы с различной пористостью (US №4666668, А61М 1/14, опубл. 19.05.1987, или US №5114803, Н01М 8/10, опубл. 19.05.1992, или US №5308712, Н01М 8/10, опубл. 03.05.1994).

Однако получение такой системы представляет собой сложный и трудоемкий процесс, не обеспечивающий высокого процента качественного выхода готовых изделий со стабильными свойствами надежности и высокой пропускной функцией.

Известно устройство, представляющее систему, включающую в себя тонкую металлическую пленку, нанесенную, в частности, методом ионно-атомного напыления металла на пористую подложку (US №2006/068253, Н01М 8/10, 2/14, опубл. 30.03.2006).

Недостатком данного решения является то, что соотношение толщина пленки - размер пор мембраны таково, что напыленная металлическая пленка-мембрана существенным образом уменьшает пропускаемость мембраны. Кроме того, применение метода ионно-атомного напыления металла не позволяет получить пористость, равную естественной газовой проницаемости металлических пленок применительно к атомам водорода или иных газов. Кроме того, такие мембраны отличаются достаточно большими габаритами и слабой эксплуатационной надежностью

Данное решение принято в качестве прототипа для заявленного устройства.

Из этого же источника известен способ изготовления нанофильтра. Поэтому данное решение также принято в качестве прототипа для заявленного способа.

Настоящее изобретение направлено на решение технической задачи по созданию простой и надежной системы подложка - мембрана, обеспечивающей гарантированную пропускную способность газового компонента из газообразной среды и максимальную прочность к перепаду давлений.

Получаемый при этом технический результат заключается в улучшении эксплуатационных характеристик, эффективности пропускной функции для таких газов, как водород, и надежности и долговечности работы.

Указанный технический результат для устройства достигается тем, что в селективном нанофильтре, содержащем подложку, выполненную по всей поверхности с порами в виде сквозных отверстий, направленных вдоль толщины подложки, и активный слой, при этом толщина подложки больше толщины активного слоя, подложка выполнена с размером пор 50-100 нм, а активный слой представляет собой тонкую толщиной 100-150 нм беспористую пленку металла с высокой селективной газовой проницаемостью, прикрепленную к подложке с перекрытием пор последней.

Указанный технический результат для способа достигается тем, что способ изготовления селективного нанофильтра характеризуется следующим перечнем операций:

- на фольгу из вспомогательного металла методом ионно-атомного осаждения наносят заданной толщиной пленку металла с высокой селективной газовой проницаемостью для получения не обладающей структурной пористостью пленки из сплошного металла,

- на поверхность одной стороны подложки с порами методом ионно-атомного осаждения наносится адгезивный слой функционального металла,

- фольгу с пленкой металла с высокой селективной газовой проницаемостью помещают на подложку и прижимают сторону с пленкой металла с высокой селективной газовой проницаемостью к слою функционального металла на подложке,

- после чего сначала пленку металла с высокой селективной газовой проницаемостью приваривают диффузионной сваркой к подложке,

- а затем фольгу вспомогательного материала удаляют путем ее химического растворения.

Указанные признаки являются существенными и взаимосвязаны с образованием устойчивой совокупности существенных признаков, достаточной для получения требуемого технического результата.

Настоящее изобретение поясняется конкретным примером исполнения, который, однако, не является единственно возможным, но наглядно демонстрирует возможность достижения требуемого технического результата.

На фиг.1 дано изображение в разрезе пористой подложки;

фиг.2 - то же, что на фиг.1, с нанесенным адгезивным слоем функционального металла;

фиг.3 - фольга из вспомогательного металла с пленкой металла с высокой селективной газовой проницаемостью;

фиг.4 - закрепление пленки металла на подложке;

фиг.5 - демонстрация процесса удаления фольги электролитическим способом.

Согласно настоящему изобретению рассматривается новая конструкция селективного нанофильтра, используемого для сепарации, например, водорода из газовой смеси. Селективный нанофильтр выполнен двухслойным со слоями существенно различной пористости, первый из которых является функциональным (на нем происходит разделение газовых компонентов), а второй обеспечивает механическую прочность и является каркасом для функционального слоя (подложка).

Селективный нанофилътр содержит подложку 1 (фиг.1), выполненную по всей поверхности с порами 2 в виде сквозных отверстий, направленных вдоль толщины подложки. На поверхности одной стороны подложки закреплен активный слой, при этом толщина подложки больше толщины активного слоя. Подложка выполнена с размером пор 50-100 нм, а активный слой представляет собой тонкую толщиной 100-150 нм беспористую пленку 3 металла с высокой селективной газовой проницаемостью, прикрепленную к подложке с перекрытием пор последней. При этом применительно к процессу отделения атомов водорода пленка активного слоя выполняется из палладия или никеля для пропуска атомов водорода. Естественно, что для другого газа выбор металла определяется степенью его газовой проницаемости в состоянии тонкой пленки.

Так как подложка может быть выполнена, например, из керамического материала, то отсутствуют условия формирования связей между подложкой и пленкой металла. В заявленном решении применен метод промежуточного слоя, который, с одной стороны, имеет очень высокую адгезию, например, с керамикой, а с другой стороны - с металлом активного слоя. Такой диффузионно напыленный слой является связью между слоем металла и керамикой. Вместо керамики могут использоваться и другие материалы, в том числе и металлы. В связи с этим соединение пластины (мембраны) с подложкой получается долговечным и может быть проконтролировано по результату исполнения.

Малая толщина пленки позволяет получить высокую проницаемость при невысоких температурах. Обычно толщина металла определяется из условий прочности (например, при напуске в вакуум перепад давления 1 атм), и поэтому для эффективной работы требуются температуры 100-400°С. Использовать свободную пленку малой толщины невозможно, поэтому предлагается использовать подложку как основу, а малый размер ее пор обеспечит достаточную прочность пленки и ее неразрушаемость при внешнем нагружении в процессе сепарации.

Данный селективный нанофильтр изготавливают следующим образом.

На фольгу 4 из вспомогательного металла (фиг.3) методом ионно-атомного осаждения наносится пленка 3 требуемого металла с заданной толщиной. Пи этом выбирается металл с высокой селективной газовой проницаемостью для данного типа газа. Такой способ осаждения позволяет получить пленку сплошного металла, т.е. не обладающую структурной пористостью. Технология получения таких пленок описана в нижеприведенных работах:

- Вальднер В.О., Заболотный В.Т. Электрохимические исследования дефектности покрытий, полученных ионно-атомным осаждением. // Физика и химия обраб. материалов, 2004, №1, стр.35-37.

- Вальднер В.О., Заболотный В.Т., Иванов В.И., Старостин Е.Е. Диффузионная сварка с предварительным ионно-атомным осаждением // Перспективные материалы, 1997, №1, стр.86-88.

На поверхность одной стороны подложки 1 (фиг.2) с заданной пористостью (размером пор) методом ионно-атомного осаждения наносится адгезивный слой 5 функционального металла толщиной 10-50 нм (чтобы не изменить размер пор мембраны). С вопросом применения метода ионно-атомного напыления для получения высокой точности нанорельефа можно ознакомиться на сайте «Учебно-методический центр» в Интернет в режиме онлайн по адресу: http://www.eks.fel. mirea.ni/PhCMmdex/PhysCMScience/PhysCMEdSc/MishinaSit e/Foto-structs.html (04.05.2006), раздел «Нанотехнологии для сверхскоростной телекоммуникации. Фото-структуры» и раздел «материалы и методы нанотехнологии».

Затем фольгу 4 с пленкой 3 помещают на подложку 1 (фиг.4), прижимают ее сторону с пленкой металла с высокой селективной газовой проницаемостью к слою 5 функционального металла на подложке и приваривают диффузионной сваркой (т.е. выдержкой в прижатом состоянии при температуре 300-500°С). Затем фольгу вспомогательного материала удаляют путем ее химического растворения (растворяется химически, например, с использованием электролитического метода (фиг.5). Получаем подложку с приваренной пленкой функционального металла.

Настоящее изобретение промышленно применимо, может быть изготовлено с использованием достаточно хорошо отработанных технологий. При этом возможно изготовление фильтров больших размеров, так как его прочность определяется механическими качествами подложки.

Похожие патенты RU2351389C1

название год авторы номер документа
МЕМБРАНА НА КАРКАСЕ ДЛЯ НАНОФИЛЬТРОВ И НАНОРЕАКТОРОВ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2006
  • Вальднер Вадим Олегович
  • Мишина Елена Дмитриевна
  • Шерстюк Наталия Эдуардовна
  • Напольский Кирилл Сергеевич
RU2329094C1
СПОСОБ СОЗДАНИЯ КОМПОЗИЦИОННОЙ МЕМБРАНЫ ДЛЯ ОЧИСТКИ ВОДОРОДА 2013
  • Иевлев Валентин Михайлович
  • Белоногов Евгений Константинович
  • Максименко Александр Александрович
  • Рошан Наталья Робертовна
  • Бурханов Геннадий Семёнович
  • Донцов Алексей Игоревич
  • Сладкопевцев Борис Владимирович
  • Солнцев Константин Александрович
  • Чернявский Андрей Станиславович
RU2538577C2
СПОСОБ ИЗГОТОВЛЕНИЯ НАНООТВЕРСТИЙ 2010
  • Сучков Сергей Германович
  • Запороцкова Ирина Владимировна
  • Васильковский Сергей Владимирович
  • Сучков Дмитрий Сергеевич
  • Селифонов Антон Викторович
RU2427415C1
ПРОТОЧНЫЙ МОДУЛЬ ДЛЯ МЕМБРАННОГО КАТАЛИЗА И ГАЗОРАЗДЕЛЕНИЯ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2009
  • Петухов Дмитрий Игоревич
  • Елисеев Андрей Анатольевич
  • Напольский Кирилл Сергеевич
  • Ямпольский Юрий Павлович
RU2455054C2
СПОСОБ ИЗГОТОВЛЕНИЯ ПОРИСТЫХ ГРАФЕНОВЫХ МЕМБРАН И МЕМБРАНЫ, ИЗГОТОВЛЕННЫЕ С ИСПОЛЬЗОВАНИЕМ ЭТОГО СПОСОБА 2017
  • Хайт, Мюррей
  • Парк, Хюнь Гю
  • Чои, Кёунджюн
RU2745631C2
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННЫХ МЕМБРАН НА ОСНОВЕ ТОНКИХ ПЛЕНОК МЕТАЛЛОВ 2008
  • Иевлев Валентин Михайлович
  • Белоногов Евгений Константинович
  • Максименко Александр Александрович
  • Рошан Наталья Робертовна
  • Бурханов Геннадий Сергеевич
RU2381055C2
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННЫХ МЕМБРАН НА ОСНОВЕ ТОНКИХ ПЛЕНОК МЕТАЛЛОВ 2015
  • Иевлев Валентин Михайлович
  • Максименко Александр Александрович
  • Максименко Владимир Александрович
  • Донцов Алексей Игоревич
  • Рошан Наталья Робертовна
  • Бурханов Геннадий Сергеевич
  • Чистов Евгений Михайлович
RU2644640C2
СПОСОБ ПОЛУЧЕНИЯ ГИБКОЙ НАНОПОРИСТОЙ КОМПОЗИЦИОННОЙ МЕМБРАНЫ С ЯЧЕИСТОЙ СТРУКТУРОЙ ИЗ АНОДНОГО ОКСИДА МЕТАЛЛА ИЛИ СПЛАВА 2012
  • Петухов Дмитрий Игоревич
  • Напольский Кирилл Сергеевич
  • Елисеев Андрей Анатольевич
  • Лукашин Алексей Викторович
RU2545887C2
КОМПОЗИЦИОННАЯ МЕМБРАНА ДЛЯ ОСУШЕНИЯ ПРИРОДНЫХ И ТЕХНОЛОГИЧЕСКИХ ГАЗОВЫХ СМЕСЕЙ НА ОСНОВЕ ОКСИДА ГРАФЕНА ИНТЕРКАЛИРОВАННОГО ГИДРОКСИЛИРОВАННЫМИ ПРОИЗВОДНЫМИ ФУЛЛЕРЕНОВ 2019
  • Броцман Виктор Андреевич
  • Чернова Екатерина Александровна
  • Петухов Дмитрий Игоревич
  • Лукашин Алексей Викторович
  • Елисеев Андрей Анатольевич
RU2730320C1
СПОСОБ ФОРМИРОВАНИЯ ТОНКОЙ ФОЛЬГИ ТВЕРДОГО РАСТВОРА Pd-Cu С КРИСТАЛЛИЧЕСКОЙ РЕШЕТКОЙ ТИПА CsCi 2013
  • Иевлев Валентин Михайлович
  • Белоногов Евгений Константинович
  • Максименко Александр Александрович
  • Донцов Алексей Игоревич
  • Кущев Сергей Борисович
  • Канныкин Сергей Владимирович
  • Рошан Наталья Робертовна
  • Бурханов Геннадий Семёнович
  • Солнцев Константин Александрович
  • Чернявский Андрей Станиславович
  • Чистов Евгений Михайлович
RU2535843C1

Реферат патента 2009 года СЕЛЕКТИВНЫЙ НАНОФИЛЬТР И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Изобретение относится к области мембранной технологии и нанотехнологии. Селективный нанофильтр содержит подложку, выполненную по всей поверхности с порами в виде сквозных отверстий, направленных вдоль толщины подложки, и активный слой, при этом толщина подложки больше толщины активного слоя. Подложка выполнена с размером пор 50-100 нм, а активный слой представляет собой тонкую толщиной 100-150 нм беспористую пленку металла с высокой селективной газовой проницаемостью, прикрепленную к подложке с перекрытием пор последней. Способ изготовления включает получение подложки, нанесение слоя из фольги с нанесенной пленкой металла с селективной газопроницаемостью, их сварку и удаление фольги. Изобретение обеспечивает гарантированную пропускную способность, высокую прочность и надежность. 2 н. и 2 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 351 389 C1

1. Селективный нанофильтр, содержащий подложку, выполненную по всей поверхности с порами в виде сквозных отверстий, направленных вдоль толщины подложки, и активный слой, при этом толщина подложки больше толщины активного слоя, отличающийся тем, что подложка выполнена с размером пор 50-100 нм, а активный слой представляет собой тонкую толщиной 100-150 нм беспористую пленку металла с высокой селективной газовой проницаемостью, прикрепленную к подложке с перекрытием пор последней.

2. Селективный нанофильтр по п.1, отличающийся тем, что пленка активного слоя выполнена из палладия или никеля для пропуска атомов водорода.

3. Способ изготовления селективного нанофильтра, характеризующийся тем, что на фольгу из вспомогательного металла методом ионно-атомного осаждения наносят заданной толщины пленку металла с высокой селективной газовой проницаемостью для получения не обладающей структурной пористостью пленки из сплошного металла, на поверхность одной стороны подложки с порами методом ионно-атомного осаждения наносят адгезивный слой функционального металла, а затем фольгу с пленкой металла с высокой селективной газовой проницаемостью помещают на подложку и прижимают сторону с пленкой металла с высокой селективной газовой проницаемостью к слою функционального металла на подложке, после чего сначала пленку металла с высокой селективной газовой проницаемостью приваривают диффузионной сваркой к подложке, а затем фольгу вспомогательного материала удаляют путем ее химического растворения.

4. Способ по п.3, отличающийся тем, что приваривание пленки металла с высокой селективной газовой проницаемостью к подложке осуществляют путем выдержки в прижатом состоянии при температуре 300-500°С.

Документы, цитированные в отчете о поиске Патент 2009 года RU2351389C1

US 7108813 А 19.09.2006
US 7279222 А, 09.10.2007
US 6086729 А, 11.07.2000
US 71011421 А, 05.09.2006
US 6171712 А, 19.09.2006
Пломбировальные щипцы 1923
  • Громов И.С.
SU2006A1
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННЫХ МЕМБРАН НА ОСНОВЕ ТОНКИХ ПЛЕНОК МЕТАЛЛОВ 2004
  • Старков Виталий Васильевич
  • Вяткин Анатолий Федорович
  • Волков Владимир Тимофеевич
RU2285748C2

RU 2 351 389 C1

Авторы

Мишина Елена Дмитриевна

Шерстюк Наталия Эдуардовна

Кузнецов Михаил Александрович

Ильин Никита Александрович

Даты

2009-04-10Публикация

2007-12-27Подача