СПОСОБ ФОРМИРОВАНИЯ ТОНКОЙ ФОЛЬГИ ТВЕРДОГО РАСТВОРА Pd-Cu С КРИСТАЛЛИЧЕСКОЙ РЕШЕТКОЙ ТИПА CsCi Российский патент 2014 года по МПК C23C14/35 C22C5/04 C22F1/14 B01D71/02 

Описание патента на изобретение RU2535843C1

Изобретение относится к технологии создания селективных газовых мембран, функционирующих за счет избирательной диффузии атомов газа (водорода) сквозь тонкую металлическую пленку (из палладия или сплавов на его основе), которые используются в устройствах глубокой очистки водорода от сопутствующих примесей, сепарации водорода из водородсодержащих смесей газов, в микрореакторах и др.

Традиционно мембраны изготовляют из фольги мембранных сплавов толщиной 30-100 мкм, полученной методом прокатки. Сопротивление мембран прохождению водорода обратно пропорционально их толщине. Уменьшение толщины селективных мембран - основной способ повышения их производительности. Однако принципиальные трудности уменьшения толщины фольги методом прокатки, низкая механическая прочность сверхтонких мембран, полученных таким методом, и сложность их герметизации не позволяют создавать надежные промышленные мембраны для очистки водорода с толщиной селективной фольги менее 30 мкм [Бурханов Г.С., Горина Н.Б., Кольчугина Н.Б., Рошан Н.Р. Российский химический журнал. - 2006. Т.50, с.36-40].

Известен способ изготовления композитных мембран [патент RU 2285748, МПК С23С 26/00, B81B 3/00, H04R 7/16, опубл. 20.10.2006], по которому осуществляют нанесение на очищенную технологическую подложку тонкой пленки из металлов, или сплавов, или металлических соединений на их основе, последующее отделение металлической пленки от подложки и перенос ее на пористый держатель мембраны. В качестве подложки берут пластины монокристаллического кремния приборного качества, используемые для микроэлектроники. Нанесение пленки осуществляют по крайней мере одним из методов физического или химического осаждения. Отделение металлической пленки от подложки осуществляют путем полного или частичного растворения подложки в растворах флотационного типа для данной металлической пленки. Перенос металлической пленки на пористый держатель мембраны осуществляют из водного раствора с последующим закреплением металлической пленки на держателе.

Недостатками данного метода являются сложности герметизации селективного слоя на пористом держателе и существенное ограничение минимальной толщины металлической пленки, связанное с ее последующим переносом.

В патенте US 6372363 [МПК B01D 71/02, C01B 3/50, С22С 5/04, C22F 1/14, опубл. 16.04.2002] описан способ получения мембраны, в частности, из сплава состава Pd-40% Cu, включающий первичную прокатку фольги сплава палладия до толщины 50 мкм и последующее утонение фольги химическим травлением до 2,7 и 10,8 мкм. Недостатки этого способа - низкая технологичность и сложность в подборе химического состава для травления различных палладиевых сплавов.

Гибкость вакуумных технологий позволяет в принципе создавать свободную фольгу различных металлов и сплавов любой толщины (от долей до десятков микрометров), а метод магнетронного распыления позволяет наносить конденсированный слой твердых растворов металлов заданного состава. Сегодня перечень публикаций по проблеме создания свободной тонкой фольги эффективных мембранных сплавов на основе Pd методами вакуумных технологий весьма ограничен.

Из мембранных сплавов на основе Pd [Диаграммы состояния двойных металлических систем: Справочник: В 3 т.: Т.2 / Под общей редакцией Н.П. Лякишева - М.: Машиностроение, 1997. - 1024 с.] для глубокой очистки водорода давно привлекает внимание система Pd-Cu. Для этой системы помимо уменьшения толщины фольги возможен второй путь повышения производительности - это многократное увеличение удельной проницаемости при синтезе упорядоченного твердого раствора с решеткой типа CsCl (β-фаза) [Водород в металлах. Под ред. Г. Алефельда и М. Фелькля, пер. с англ. под ред. Ю.М. Кагана, Т.1. - М.: Мир. - 1981. - 475 с.], образование которой возможно в относительно узкой области элементного состава (по массе близко к Pd-40%Cu). Кристаллическая решетка типа CsCl упорядоченного твердого раствора PdCu (β-фаза) по сравнению с гранецентрированной кубической (ГЦК) решеткой неупорядоченного твердого раствора (α-фаза) характеризуется меньшим расстоянием между октапустотами (по ним происходит диффузия водорода), что снижает барьер для диффузии. Согласно обобщенным результатам большого числа экспериментальных работ энергия активации диффузии водорода в упорядоченном твердом растворе составляет 0,035 эВ, в неупорядоченном - 0,325 эВ, в Pd - 0,23 эВ. Коэффициент диффузии при температуре 300 К в β-фазе почти на четыре порядка величины больше, чем в α-фазе, на два порядка больше, чем в Pd.

Таким образом, перспективный путь повышения производительности мембраны - увеличение водородопроницаемости за счет α→β фазового превращения и синтез фольги из упорядоченного твердого раствора Pd-Cu. Результаты системных исследований кинетики процесса, выполненные на различных образцах (фольга, проволока, порошки), показали, что α→β превращению способствует исходное неравновесное состояние сплава, достигаемое пластической деформацией.

Индустрия мембран из фольги упорядоченного твердого раствора Pd-Cu (β-фаза) методом прокатки чрезвычайно затруднена, поскольку включает в себя промежуточные отжиги при температуре значительно выше интервала существования упорядоченной β-фазы. Авторы [Волков А.Ю., Новикова О.С., Антонов Б.Д. // Неорганические материалы. - 2012. - Т.48. - №12. - С.1325-1330] экспериментально показали возможность полного α→β превращения при условии интенсивной пластической деформации (90-95%) и последующей длительной термообработки. Способ предполагает нагрев пластически деформированного сплава до 550-600°С и медленное охлаждение до 200°С с выдержкой по 1 неделе через каждые 50°С; далее материал остывает со скоростью 20°С/сут. В итоге был получен сплав, практически полностью упорядоченный по типу CsCl. Очевидным недостатком этого способа является низкая производительность и технологичность, сложность и продолжительность термомеханической обработки.

В статье «Водородопроницаемость фольги сплавов Pd-Cu, Pd-Ru и Pd-In-Ru, полученной магнетронным распылением» [В.М. Иевлев и др. // Конденсированные среды и межфазные границы, 2014, Том 14, №4, с.422-427] описан метод, принятый за прототип, согласно которому однофазную фольгу упорядоченного твердого раствора (β-фаза) получали магнетронным распылением мишени состава Pd-40% Cu при давлении рабочего газа (Ar) 10-1 Па на термически оксидированные полированные пластины монокристаллического кремния с толщиной оксида до 600 нм при температуре подложки 300 К. В процессе роста на ненагретой подложке при скорости конденсации около 2 нм·с-1 формируется только β-фаза с двумя преобладающими аксиальными текстурами роста зерен <110> и <112>.

Однако при повышении температуры подложки данным методом получали двухфазную (β и α-фазы) с преобладанием первой фазы.

Поскольку не всегда удается выдержать необходимую концентрацию компонентов в сплавной мишени (разная скорость распыления компонентов, диффузия компонентов в зону нагрева), а также параметров конденсации (скорость конденсации отличается от оптимальной, температура подложки повысилась вследствие длительной конденсации при изготовлении толстых пленок и т.п.), то в пленке образуется смесь фаз упорядоченного и неупорядоченного твердых растворов, таким образом, образование неупорядоченного твердого раствора приводит к резкому снижению проницаемости пленки.

Предлагаемый способ направлен на снижение содержания доли неупорядоченной фазы в уже готовой (сконденсированной) пленке.

Задача настоящего изобретения состоит в повышении производительности селективных композитных мембран для глубокой очистки водорода, снижении расхода драгоценного металла, снижении количества брака по упорядоченной фазе.

Технический результат заключается в создании легковоспроизводимым и экономичным способом высокоэффективных мембран для глубокой очистки водорода, обладающих высокой селективной водородопроницаемостью и производительностью.

Технический результат достигается тем, что в способе формирования тонкой фольги твердого раствора Pd-Cu с кристаллической решеткой типа CsCl, включающем магнетронное распыление мишени состава, близкого к Pd-40% Сu, в среде Ar 10-1 Па на подложку из термически оксидированных полированных пластин монокристаллического кремния, отделение полученной фольги от подложки, согласно изобретению температура подложки должна быть от 300 до 700 K, а отделенная тонкая фольга дополнительно нагревалась в вакууме не ниже 10-4 Па со скоростью 100 К/час до температуры 970 К и охлаждалась со скоростью 100-200 К/час до комнатной температуры.

На чертеже приведены фрагменты рентгеновских дифрактограмм фольги сплава Pd-40% Cu, сконденсированной на предварительно нагретой до 670 К подложке (А), и отделенной от подложки фольги, подвергнутой термообработке в вакууме (Б) и охлажденной до комнатной температуры (В).

Плотность потока конденсируемых из газовой фазы атомов металла составляет 0,5÷2,5 см-2с-1.

Пример. Формирование однофазной фольги из упорядоченного твердого раствора Pd-Cu в процессе роста и последующей термообработки

Сплав состава, близкого к Pd-40% Cu, допускающий погрешность ±3%, изготовлен в индукционной печи при давлении газов не более 10-2 Па. Из него сформировали мишень диаметром 80,0 мм, толщиной 3,0 мм. Нанесение конденсата производили методом магнетронного распыления в среде Ar (10-1 Па). Скорость конденсации составляла 2,0 нм·с-1. Конденсацию проводили на окисленную поверхность монокристаллической пластины кремния (SiO2/Si). Фольга отделялась механически. Температура подложки составляла 670 К.

Из фрагментов РД следует, что в процессе роста формируется двухфазная фольга (см. чертеж (А)): преобладает β-фаза с текстурой <112> при незначительной доле α-фазы.

Отделенную от подложки фольгу подвергали нагреву до 970 К в вакууме не ниже 10-4 Па в камере рентгеновского дифрактометра ARL X-TRA со скоростью 100 К/час. При нагревании исходных однофазных или двухфазных образцов в камере дифрактометра до 870 К происходили рекристаллизация и полное превращение β-фазы в α-фазу (аналогично Б на чертеже) с аксиальной текстурой <111>. После нагрева фольгу охлаждали со скоростью 100 К/час до комнатной температуры. В результате происходит полное обратное превращение в β-фазу (В на чертеже).

В том случае, если в исходной структуре преобладала текстура <112> β-фазы, то в результате цикла нагревание-охлаждение формировалась текстура <110> β-фазы. При этом заметно сужение пиков, свидетельствующее о совершенствовании структуры фольги в результате рекристаллизации. Температурный гистерезис полного фазового превращения в заданном режиме составляет около 100 К.

Предлагаемый способ позволяет реализовать оба подхода повышения производительности мембран глубокой очистки водорода: путем создания однофазной структуры с кристаллической решеткой типа CsCl (увеличение удельной водородопроницаемости) и уменьшением толщины селективной фольги. Сравнение разработанного способа изготовления мембранного материала с известными способами показывает, что использование данного способа позволяет управлять фазовым составом и параметрами структуры селективного слоя режимами вакуумного нанесения (магнетронное распыление и конденсация в вакууме) и режимами последующей термообработки (нагрев и охлаждение с заданными температурой и скоростью в вакууме). По сравнению с методами и подходами к формированию упорядоченной структуры фольги Pd-Cu предлагаемый способ многократно снижает время процесса.

Похожие патенты RU2535843C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННЫХ МЕМБРАН НА ОСНОВЕ ТОНКИХ ПЛЕНОК МЕТАЛЛОВ 2015
  • Иевлев Валентин Михайлович
  • Максименко Александр Александрович
  • Максименко Владимир Александрович
  • Донцов Алексей Игоревич
  • Рошан Наталья Робертовна
  • Бурханов Геннадий Сергеевич
  • Чистов Евгений Михайлович
RU2644640C2
СПОСОБ СОЗДАНИЯ КОМПОЗИЦИОННОЙ МЕМБРАНЫ ДЛЯ ОЧИСТКИ ВОДОРОДА 2013
  • Иевлев Валентин Михайлович
  • Белоногов Евгений Константинович
  • Максименко Александр Александрович
  • Рошан Наталья Робертовна
  • Бурханов Геннадий Семёнович
  • Донцов Алексей Игоревич
  • Сладкопевцев Борис Владимирович
  • Солнцев Константин Александрович
  • Чернявский Андрей Станиславович
RU2538577C2
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННЫХ МЕМБРАН НА ОСНОВЕ ТОНКИХ ПЛЕНОК МЕТАЛЛОВ 2008
  • Иевлев Валентин Михайлович
  • Белоногов Евгений Константинович
  • Максименко Александр Александрович
  • Рошан Наталья Робертовна
  • Бурханов Геннадий Сергеевич
RU2381055C2
МОДИФИЦИРОВАННЫЙ МАТЕРИАЛ, МОДИФИЦИРОВАННЫЙ АНТИМИКРОБНЫЙ МАТЕРИАЛ, СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОГО МАТЕРИАЛА, СПОСОБ ФОРМИРОВАНИЯ АНТИМИКРОБНОГО ПОКРЫТИЯ НА УСТРОЙСТВЕ И МЕДИЦИНСКОЕ УСТРОЙСТВО, КОТОРОЕ ПРЕДПОЛАГАЕТСЯ ИСПОЛЬЗОВАТЬ В КОНТАКТЕ С ЭЛЕКТРОЛИТОМ НА ОСНОВЕ СПИРТА ИЛИ ВОДЫ, ИМЕЮЩЕЕ НА СВОЕЙ ПОВЕРХНОСТИ АНТИМИКРОБНОЕ ПОКРЫТИЕ 1993
  • Роберт Эдвард Баррелл
  • Лэрри Р.Моррис
RU2131269C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИТНОГО ВОДОРОДНОГО ЭЛЕКТРОДА ДЛЯ КИСЛОРОДНО-ВОДОРОДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ 2017
  • Петриев Илья Сергеевич
  • Фролов Владимир Юрьевич
  • Барышев Михаил Геннадьевич
  • Калинчук Валерий Владимирович
  • Ломакина Лариса Владимировна
  • Елкина Анна Анатольевна
  • Болотин Сергей Николаевич
RU2674748C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННЫХ МЕМБРАН НА ОСНОВЕ ТОНКИХ ПЛЕНОК МЕТАЛЛОВ 2004
  • Старков Виталий Васильевич
  • Вяткин Анатолий Федорович
  • Волков Владимир Тимофеевич
RU2285748C2
Способ получения композиционных мембранных материалов на основе гидридообразующих интерметаллических соединений и полимерных связующих 2016
  • Стругова Дарья Владимировна
  • Клямкин Семён Нисонович
  • Задорожный Михаил Юрьевич
  • Задорожный Владислав Юрьевич
  • Калошкин Сергей Дмитриевич
RU2624108C1
АНТИМИКРОБНЫЕ МАТЕРИАЛЫ 1994
  • Роберт Эдвард Баррелл
  • Прасад Шрикришна Апте
  • Кашмир Сингх Джилл
  • Родерик Джон Прихт
  • Лэрри Рой Моррис
  • Катрин Лаури Макинтош
  • Садхиндра Бхарат Сант
RU2167526C2
СПОСОБ ИЗГОТОВЛЕНИЯ ВОДОРОДНОГО ЭЛЕКТРОДА ДЛЯ КИСЛОРОДНО-ВОДОРОДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ 2016
  • Фролов Владимир Юрьевич
  • Болотин Сергей Николаевич
  • Ломакина Лариса Владимировна
  • Барышев Михаил Геннадьевич
  • Петриев Илья Сергеевич
RU2624012C1
СПОСОБ ФОРМИРОВАНИЯ YBaCuO-Х ПЛЕНОК С ВЫСОКОЙ ТОКОНЕСУЩЕЙ СПОСОБНОСТЬЮ НА ЗОЛОТОМ БУФЕРНОМ ПОДСЛОЕ 2013
  • Серопян Геннадий Михайлович
  • Сычев Сергей Александрович
  • Петров Александр Геннадьевич
  • Федосов Денис Викторович
RU2538931C2

Иллюстрации к изобретению RU 2 535 843 C1

Реферат патента 2014 года СПОСОБ ФОРМИРОВАНИЯ ТОНКОЙ ФОЛЬГИ ТВЕРДОГО РАСТВОРА Pd-Cu С КРИСТАЛЛИЧЕСКОЙ РЕШЕТКОЙ ТИПА CsCi

Изобретение относится к технологии создания селективных газовых мембран, функционирующих за счет избирательной диффузии атомов газа (водорода) сквозь тонкую металлическую пленку (из палладия или сплавов на его основе), которые используются в устройствах глубокой очистки водорода от сопутствующих примесей, сепарации водорода из водородсодержащих смесей газов, в микрореакторах. Способ формирования тонкой фольги твердого раствора Pd-Cu с кристаллической решеткой типа CsCl включает магнетронное распыление мишени состава, близкого к Pd-40% Cu, в среде Ar 10-1 Па на термически оксидированные полированные пластины монокристаллического кремния и отделение полученной фольги от подложки, при этом температура подложки составляет 300-700 К, а отделенную тонкую фольгу дополнительно нагревают в вакууме не хуже 10-4 Па со скоростью 100 К/час до температуры 970 К и охлаждают со скоростью 100-200 К/час до комнатной температуры. Технический результат заключается в создании легковоспроизводимым и экономичным способом высокоэффективных мембран для глубокой очистки водорода, обладающих высокой селективной водородопроницаемостью и производительностью. 1 ил., 1 пр.

Формула изобретения RU 2 535 843 C1

Способ формирования тонкой фольги твердого раствора Pd-Cu с кристаллической решеткой типа CsCl, включающий магнетронное распыление мишени состава, близкого к Pd-40% Cu, в среде Ar 10-1 Па на термически оксидированные полированные пластины монокристаллического кремния, отделение полученной фольги от подложки, отличающийся тем, что температура подложки должна быть от 300 до 700 К, а отделенная тонкая фольга дополнительно нагревалась в вакууме не хуже 10-4 Па со скоростью 100 К/час до температуры 970 К и охлаждалась со скоростью 100-200 К/час до комнатной температуры.

Документы, цитированные в отчете о поиске Патент 2014 года RU2535843C1

ИЕВЛЕВ В.М
и др., Водородопроницаемость фольги сплавов Pd-Cu, Pd-Ru и Pd-In-Ru, полученной магнетронным распылением, "Конденсированные среды и межфазные границы", 2012, том 14, N4, стр.422-427
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННЫХ МЕМБРАН НА ОСНОВЕ ТОНКИХ ПЛЕНОК МЕТАЛЛОВ 2004
  • Старков Виталий Васильевич
  • Вяткин Анатолий Федорович
  • Волков Владимир Тимофеевич
RU2285748C2
US 8119205 B2, 21.02.2012
US 6372363 B1, 16.04.2002

RU 2 535 843 C1

Авторы

Иевлев Валентин Михайлович

Белоногов Евгений Константинович

Максименко Александр Александрович

Донцов Алексей Игоревич

Кущев Сергей Борисович

Канныкин Сергей Владимирович

Рошан Наталья Робертовна

Бурханов Геннадий Семёнович

Солнцев Константин Александрович

Чернявский Андрей Станиславович

Чистов Евгений Михайлович

Даты

2014-12-20Публикация

2013-10-24Подача