СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА Российский патент 2009 года по МПК C01B3/08 

Описание патента на изобретение RU2356830C2

Изобретение относится к производству водорода, гидроокиси и окиси алюминия из металлического алюминия. Изобретение может быть использовано при изготовлении составов для электрогенераторов (электрохимических генераторов) и термогенераторов (газовых горелок, устройств газосварки), в качестве горючего вещества использующих водород.

Известен способ получения водорода путем взаимодействия дисперсного алюминия с водой (Пат. RU 2278077 С1 от 20.06.06), при нагреве зоны взаимодействия в диапазоне температур 360÷1050°С и давлении 14÷25 атм. Известный способ имеет ряд существенных недостатков, а именно:

- продукты реакции на выходе из реактора взаимодействия алюминия с водой образуют смесь водяного пара и водорода, что требует дополнительных мероприятий для отделения последнего от паров воды;

- организация в зоне реакции высоких температур и давления требует дополнительных энергетических затрат на нагрев реактора и повышение давления;

- сочетание в реакторе перегретого до высоких температур пара и водорода при значительном давлении требует сложного и ответственного технологического оформления.

Известен также способ получения водорода (Пат. RU 2241721 С1 от 10.12.04) путем взаимодействия дисперсного алюминия с водой при нормальном давлении и комнатной температуре. Применяемые для этих целей частицы алюминия подвергаются предварительному плакированию водорастворимыми полимерами (например, полиэтиленоксидом) для предотвращения взаимодействия металла с кислородом воздуха. При взаимодействии с водой частицы алюминия подвергаются дополнительному измельчению для разрушения оксидной пленки и доступа воды (окислителя) к активному (не защищенному оксидной пленкой) металлу. Указанный способ является наиболее близким по технической сущности и достигаемому эффекту к заявляемому техническому решению и принят за прототип.

Основным недостатком, выявленным в способе-прототипе, является то, что механически измельчаемые (например, посредством размольных тел) частицы имеют минимальный критический размер, меньше которого размол частиц невозможен. Эти частицы из-за геометрических и структурных параметров перестают подвергаться дальнейшему механическому разрушению, и процесс их взаимодействия с водой прекращается. Следовательно, в результате реакции остается некоторое количество непрореагировавшего алюминия, что снижает полноту проведения реакции. К недостаткам прототипа также относятся энергозатраты для реализации внешнего физического воздействия.

Задачей технического решения является повышение эффективности проведения реакции (полнота проведения процесса) взаимодействия алюминия с водой для получения водорода при нормальных условиях и исключение внешнего дополнительного воздействия.

Указанный технический результат достигается тем, что предназначенный для взаимодействия с водой алюминий в жидком состоянии подвергается легированию висмутом или свинцом, взятыми в количестве 0,1-3 вес.%. Легированный алюминий затем диспергируют.

Добавки висмута и свинца приводят к искажению структуры алюминия, возникновению в ней напряжений, которые в свою очередь приводят к возникновению микродефектов в сопряженной оксидной пленке. Т.е. напряжения в кристаллической структуре алюминия приводят к появлению в хрупкой оксидной пленке микротрещин, через которые вода поступает к обнаженной поверхности алюминия с образованием водорода и гидроокиси по реакции:

2Al+6Н2О=2Al(ОН)3+3Н2+200 ккал/моль

Выделяемое при этом, в значительном количестве, тепло способствует увеличению скорости реакции гидратации алюминия.

Алюминий имеет кубическую объемно-центрированную кристаллическую решетку с межатомным расстоянием 2,9 А. Внедрение в эту структуру легирующих элементов с эффективным атомным диаметром, превышающим это межатомное расстояние в 1,6 раза, приводит к искажению кристаллической структуры и возникновению внутренних напряжений. Легирование алюминия, например, магнием (Mg), имеющим эффективный диаметр атома 4,15 А, что на 40% больше межатомного расстояния в решетке алюминия, не влияет на искажение структуры окисной пленки. То же самое относится к лигатуре из меди, железа и т.д.

Внедрение в структуру алюминия таких элементов, как висмут (Bi - Д=4,76 А) и свинец (Pd - Д=4,9 А), приводит к эффекту значительного искажения кристаллической структуры алюминия и образованию в структуре сопряженной окисной пленки дефектов, открывающих доступ воды к активному металлу.

Наиболее эффективное количество легирующих компонентов, активирующих алюминий для взаимодействия с водой, колеблется в пределах 0,1-3 вес.%. При добавках в количестве, меньшем, чем указано в соотношении, легирующие компоненты растворяются не по всему объему, что приводит к медленному взаимодействию алюминия с водой и неполной его гидратации. Добавки, превышающие 3 вес.%, приводят к возникновению сильных искажений структуры окисной пленки, которые позволяют металлу окисляться на воздухе, что снижает сроки хранения до вступления металла в реакцию взаимодействия с водой.

Проведенный анализ уровня техники показал, что заявленная совокупность существенных признаков, изложенная в формуле изобретения, неизвестна. Это позволяет сделать вывод о ее соответствии критерию «новизна». Для проверки соответствия заявленного изобретения критерию «изобретательский уровень» проведен дополнительный поиск известных технических решений с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявленного технического решения. Установлено, что заявленное техническое решение не следует явным образом из известного уровня техники. Следовательно, заявленное изобретение соответствует критерию «изобретательский уровень». Сущность изобретения подтверждена примером практической реализации способа.

Пример практической реализации

Предлагаемое техническое решение конкретно осуществлялось в процессе генерации водорода для топливного источника электрической энергии на базе водородных элементов с ионообменной мембраной. Для этих целей в специальном реакторе при нормальном давлении и в начальный период при комнатной температуре проводилось взаимодействие частиц алюминия с водопроводной водой. Используемый для этих целей алюминий марки Ал 1 предварительно подвергался легированию в расплавленном состоянии чистым висмутом (Bi), добавляемым в количестве 1 вес.%. После легирования расплавленный алюминий подвергался диспергированию (экстракции частиц из расплава). При взаимодействии подготовленных частиц алюминия с водой, при указанных выше режимах, наблюдалось бурное выделение водорода со скоростью взаимодействия 0,5 кг порошка в час. За час проведения реакции выделилось 50 граммов водорода, что эквивалентно 1кВт·час электроэнергии. При легировании расплава алюминия висмутом в количестве 2 вес.% скорость взаимодействия алюминия с водой составляла величину 1 кг в час. При легировании алюминия 3,5 вес.% висмута наблюдалось окисление металла кислородом воздуха, что проявлялось изменением температуры дисперсных частиц алюминия и их разрушением без внешнего воздействия. Подобные результаты получены при легировании алюминия свинцом.

На основании вышеизложенного можно сделать вывод, что заявленный способ получения водорода может быть реализован на практике с достижением заявленного технического результата, т.е. он соответствует критерию «промышленная применимость».

Похожие патенты RU2356830C2

название год авторы номер документа
СПОСОБ ЛЕГИРОВАНИЯ МЕТАЛЛОВ В ПЛЕНКАХ 2004
  • Тулеушев Адил Жианшахович
  • Володин Валерий Николаевич
  • Тулеушев Юрий Жианшахович
RU2276206C2
ОСОБО ЧИСТЫЙ НИЗКОУГЛЕРОДИСТЫЙ ФЕРРОТИТАН 2003
  • Рыбин В.В.
  • Орыщенко А.С.
  • Слепнев В.Н.
  • Одинцов Н.Б.
  • Тихомиров А.В.
  • Удовиков С.П.
  • Баранцев А.С.
  • Попов О.Г.
  • Исаков М.П.
RU2247791C1
СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЕВО-КРЕМНИЕВОГО СПЛАВА 2008
  • Николаев Михаил Дмитриевич
  • Кузнецов Александр Александрович
RU2391421C1
Способ химико-термической обработки металлических порошков для производства сталей и жаропрочных сплавов, упрочненных дисперсными оксидами 2019
  • Векслер Михаил Юрьевич
  • Векслер Юрий Генрихович
  • Попов Артемий Александрович
  • Шикин Александр Владимирович
RU2780653C2
СПОСОБ ПОЛУЧЕНИЯ СИЛУМИНОВ 2018
  • Кузьмин Михаил Викторович
  • Кондратьев Виктор Викторович
  • Ларионов Леонид Михайлович
  • Клешнин Антон Александрович
RU2683176C1
Способ получения поликристаллического композиционного материала 1987
  • Дэннис Т.Клаар
  • Адам Дж.Гесинг
  • Стивен Д.Пост
  • Мерек Дж.Собчик
  • Нарасима С.Рагхаван
  • Дэйв К.Кребер
  • Алан С.Негельберг
SU1830057A3
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ЛИТИРОВАННОГО ОКСИДА КОБАЛЬТА С ЛЕГИРОВАННОЙ СТРУКТУРОЙ И МОДИФИЦИРОВАННОЙ ПОВЕРХНОСТЬЮ 2020
  • Соломенцев Сергей Юрьевич
  • Новиков Вадим Викторович
RU2755526C1
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ПОРОШКОВ АЛЮМИНИЙ-КРЕМНИЕВЫХ СПЛАВОВ 2012
  • Новиков Александр Николаевич
RU2493281C1
СПОСОБ ПОЛУЧЕНИЯ КРЕМНИЙСОДЕРЖАЩЕГО РЕАГЕНТА ДЛЯ ПРИГОТОВЛЕНИЯ АЛЮМИНИЕВО-КРЕМНИЕВЫХ СПЛАВОВ 2009
  • Куликов Борис Петрович
  • Николаев Михаил Дмитриевич
  • Кузнецов Александр Александрович
RU2429305C2
ЭЛЕКТРОД-ЭЛЕКТРОЛИТНАЯ ПАРА НА ОСНОВЕ ОКИСИ ВИСМУТА, СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ И ОРГАНОГЕЛЬ 2003
  • Мятиев А.А.
RU2236069C1

Реферат патента 2009 года СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА

Изобретение относится к производству водорода, гидроокиси и окиси алюминия из металлического алюминия. Водород получают взаимодействием с водой алюминия, легированного в расплавленном состоянии висмутом или свинцом, взятыми в количестве 0,1-3 вес.%, а затем диспергированного. Изобретение позволяет повысить эффективность проведения реакции без внешнего дополнительного воздействия.

Формула изобретения RU 2 356 830 C2

Способ получения водорода путем взаимодействия алюминия с водой при нормальном давлении, отличающийся тем, что используют алюминий, легированный в расплавленном состоянии висмутом или свинцом, взятыми в количестве 0,1-3 вес.%, а затем диспергированный.

Документы, цитированные в отчете о поиске Патент 2009 года RU2356830C2

0
SU176790A1
Способ получения водорода 1959
  • Беляев А.П.
  • Гольштейн Р.М.
SU125549A1
Состав для аккумулирования водорода 1983
  • Семененко Кирилл Николаевич
  • Вербецкий Виктор Николаевич
  • Кулиев Сахиб Исмаил Оглы
  • Курбанов Тельман Худамович
  • Гасан-Заде Азаде Алекперовна
SU1134538A1
СМЕСЬ ГИДРОРЕАГИРУЮЩАЯ 1997
  • Гопиенко В.Г.
  • Черепанов В.П.
  • Куряшкин Л.В.
  • Зотикова А.Н.
RU2131841C1
Сухой пульверизатор для нанесения на растения порошкообразных веществ, преимущественно с селекционными целями 1938
  • Барменков А.С.
SU55330A1
US 4231891 A, 04.11.1980
JP 2002104801 A, 10.04.2002.

RU 2 356 830 C2

Авторы

Кошкин Константин Николаевич

Семенов Валерий Васильевич

Серопян Георгий Ваграмович

Урусов Казим Харшимович

Даты

2009-05-27Публикация

2007-06-26Подача