СПОСОБ ПЕРЕРАБОТКИ СЕРПЕНТИНИТА Российский патент 2004 года по МПК C01F5/30 C25C3/04 C01B7/01 C01B33/14 

Описание патента на изобретение RU2241670C1

Изобретение относится к области металлургии и химической технологии неорганических веществ и может быть использовано для переработки серпентинита с получением товарных продуктов - магния и аэросила.

Известен способ извлечения соединений магния из асбестовых отходов выщелачиванием минеральной кислотой (Патент Великобритании №2033364; C 01 F 5/00; 21.05.1980).

Полученную суспензию фильтруют. Комплексную переработку асбестовых отходов не ведут - твердую фазу не перерабатывают.

Известен способ производства магния из оксидного сырья, в частности серпентинита (асбестовые отходы) выщелачиванием соляной кислотой, получаемой поглощением водой хлористого водорода из продуктов конверсии анодного хлора в факеле горения природного газа (Патент РФ 2118406, С 25 С 3/04; 27.08.89, БИ №24).

Полученный хлормагниевый раствор очищают, концентрируют и получают синтетический карналлит, электролизом обезвоженного карналлита получают магний, хлор и отработанный электролит. Комплексную переработку серпентинита не ведут - кремнийсодержащий остаток (содержание SiO2 в переработанном образце составляет 34,3%) не перерабатывают.

Известен способ получения раствора хлористого магния выщелачиванием серпентинита (отхода асбестового производства) соляной кислотой (Патент США №5980854; С 01 F 5/30, С 22 В 26/22, 09.11.1999). Полученную суспензию нейтрализуют и разделяют на твердую и жидкую фазы для извлечения чистого раствора хлористого магния, содержащего 1 ppm или менее каждой примеси.

По данному способу комплексную переработку серпентинита не ведут - твердую фазу не перерабатывают.

Наиболее близким из известных аналогов по технической сущности и достигаемому результату является способ переработки серпентинита по технологии производства магния фирмой Норанда (Bedard M. The Production of Magnesium by Noranda.58th Annual World International Magnesium Assotiation Conference. May 20-22, 2001, Brussels Belgium, p.p.57-64, прототип).

Согласно способу-прототипу, серпентинит выщелачивают соляной кислотой, суспензию нейтрализуют и фильтруют с получением хлормагниевого раствора (брайна) и диоксида кремния. Диоксид кремния отправляют в безопасное хранилище, построенное на вершине кучи серпентинитовых отвалов. Таким образом исключается использование сельскохозяйственных угодий для складирования отходов.

Хлормагниевый раствор очищают, затем сушат в кипящем слое с получением гранул дигидрата хлорида магния.

Гранулы загружают в хлоратор для обезвоживания, в хлоратор подают хлористый водород.

Безводный хлорид магния загружают в электролизер для получения металлического магния и хлора. Хлор из электролизера промывают и очищают перед сжиганием с водородом в реакторе получения хлористого водорода. Полученную соляную кислоту конденсируют для удаления следов водорода. Из соляной кислоты в десорбционных колоннах получают безводный хлористый водород, направляемый в хлоратор. Отходящие газы хлоратора, содержащие вредные органические соединения, повторно конденсируют для удаления примесей из соляной кислоты адсорбцией активированным углем.

Очищенную и подготовленную соляную кислоту рециркулируют на выщелачивание серпентинита в начало процесса.

Недостатками данного способа переработки серпентинита являются:

- низкая комплексность использования сырья, т.к. весь диоксид кремния не утилизируется (направляется в отвал);

- необходимость промывки хлора перед конверсией в хлористый водород;

- необходимость получения хлористого водорода реакцией хлора с водородом;

- необходимость дополнительной очистки хлористого водорода от следов водорода.

Технической задачей изобретения является повышение комплексности использования сырья и упрощение подготовки хлора и хлористого водорода к применению в процессах синтеза НСl и обезвоживания карналлита.

Технический результат, получаемый при осуществлении заявленного изобретения, заключается в уменьшении образования отходов производства при переработке серпентинита, исключении промывки хлора и очистки хлористого водорода от водорода.

Указанный технический результат достигается при осуществлении предлагаемого способа переработки серпентинита, сущность которого выражается следующей совокупностью существенных признаков:

- выщелачивание магния из серпентинита соляной кислотой с получением суспензии;

- фильтрование суспензии с получением хлормагниевого раствора и осадка диоксида кремния;

- очистку хлормагниевого раствора от примесей нейтрализацией, фильтрованием, получение синтетического карналлита из фильтрата и отработанного электролита;

- обезвоживание карналлита с использованием хлористого водорода;

- электролиз карналлита с получением магния, отработанного электролита и хлора;

- получение из хлора хлористого водорода хлорированием диоксида кремния с получением тетрахлорида кремния и парофазным гидролизом тетрахлорида кремния в продуктах сгорания воздушно-водородной или воздушно-углеводородной смеси с получением аэросила и хлористого водорода;

- выделение из пылепарогазовой смеси аэросила;

- обезвоживание карналлита в присутствии хлористого водорода, содержащегося в парогазовой смеси процесса парофазного гидролиза;

- абсорбцию водой хлористого водорода из отходящих газов после обезвоживания карналлита с получением соляной кислоты, направляемой на выщелачивание серпентинита.

Существенными отличительными признаками предлагаемого способа является то, что из хлора, образующегося при электролизе карналлита, хлористый водород получают в две стадии: хлорированием углеродсодержащей шихты, приготовленной из диоксида кремния, с последующим парофазным гидролизом тетрахлорида кремния с получением аэросила и хлористого водорода, направляемого на обезвоживание карналлита.

Следует отметить, что исключаются операции промывки хлора и синтеза хлористого водорода с использованием водорода и, соответственно, очистки от следов водорода.

Из сравнения рассматриваемых способов следует, что вышеуказанные новые приемы выполнения действий и новый порядок выполнения действий обеспечивают достижение технического результата при осуществлении изобретения.

На чертеже изображена технологическая схема переработки серпентинита с получением магния и аэросила.

Серпентинит измельчается и затем подается на выщелачивание раствором соляной кислоты, полученной после абсорбции отходящих газов от обезвоживания карналлита. После выщелачивания суспензия фильтруется, осадок диоксида кремния отделяется, а раствор хлористого магния подвергается очистке нейтрализацией, пульпа фильтруется и осадок гидроокисей Fe, Ni и Сr отделяется, железоникелевый концентрат отправляется потребителю.

Очищенный хлормагниевый раствор поступает на приготовление смешением с отработанным электролитом шестиводного карналлита. Полученный КСl· MgCl2·2O направляется на обезвоживание в кипящем слое в потоке хлористого водорода, полученного при парофазном гидролизе тетрахлорида кремния.

При электролизе карналлита образуется магний, который отправляется потребителю, отработанный электролит, подаваемый на приготовление шестиводного карналлита, и хлор, направляемый в процесс двухстадийного получения хлористого водорода: хлорированием диоксида кремния по реакции SiO2+2Сl2+С→ SiCl4+СO2 и парофазным гидролизом тетрахлорида кремния в продуктах сгорания водорода (или углеводорода) при температуре 1100-1400° С по реакции SiCl4+2Н2+O2SiO2+4НСl.

При парофазном гидролизе образуется аэросил (тонкодисперсный диоксид кремния), который отправляется потребителю, и хлористый водород, который направляется на обезвоживание шестиводного карналлита и последующее получение соляной кислоты (16-25% НСl) для выщелачивания серпентинита.

Образующиеся при разделении селективной конденсацией хлоридов, очистке и выделении тетрахлорида кремния хлориды нейтрализуются и утилизируются.

Отходящие газы после обезвоживания карналлита и абсорбции хлористого водорода выбрасываются в трубу, отходящие газы хлорирования обезвреживаются и выбрасываются в трубу.

Пример. В реактор загрузили 500 г серпентинита, содержащего 21,8% Mg; 5,7% Fe; 0,25% Ni; 0,2% Cr; 2% Са; 38,3% SiO2, крупностью менее 1,2 мм и 1,4 дм3 соляной кислоты (25 мас.% НСl). Суспензию выщелачивали при 80-90° С, после фильтрования получили 1,7 дм3 фильтрата хлормагниевого раствора (г/дм3): MgCl2 - 249; Fe - 16,1; СаСl2 - 13,2; Ni - 0,7; Cr - 0,26 и 203,8 г осадка диоксида кремния (мас.%): StO2 - 85,3; MgO - 0,8; Fе2O3 - 0,6; CaO - 1,3; Сr2О3 - 0,1; NiO - 0,03.

Хлормагниевый раствор нейтрализовали бруситом и едким натром, пульпу профильтровали, осадок прокалили при 700° С. Получили 62,9 г продукта, содержащего (мас.%): Fе2О3 - 62,2; NiO - 2,4; Сr2О3 - 2,1. Такой материал является качественным окисленным сырьем для производства никеля и ферроникеля.

Очищенный хлормагниевый раствор [фильтрат] (объем 1,9 дм3), содержащий (г/дм3): MgCl2 - 230; CaCl2 - 2,2; NaCl - 15; Ni - 0,0005; Cr - 0,0005; Si<0,0002; Fe - 0,0005, переработали по общепринятой схеме: упарили при температуре 110-120° С до содержания хлорида магния 36 мас.%, затем добавили 466 г отработанного электролита, содержащего (мас.%): MgCl2 - 6; KCl - 74,9; NaCl - 18; СаСl2 - 0,5, смесь нагрели до 136° С. Полученный синтетический карналлит охладили до 65° С и обезвоживали в печи кипящего слоя. В печь подавали смесь хлористого водорода с топочными газами. Содержание НСl в газовой смеси составляло 6 об.%, температуру в кипящем слое поддерживали в пределах 300-350° С, Получили 912 г обезвоженного карналлита, содержащего (мас.%): MgCl2 - 49,2; KCl - 37,6; CaCl2 - 0,5; NaCl - 12,3; MgO - 0,2; Н2O - 0,1.

Обезвоженный карналлит такого состава является качественным сырьем для получения магния и хлора обычным электролитическим способом.

100 г полученного осадка рентгеноаморфного активного диоксида кремния измельчили до крупности менее 160 мкм, прокалили при 400-450° С, смешали с углеродом и получили 130 г шихты, содержащей (мас.%): SiO2 - 65; С - 30,5. Полученную шихту прохлорировали при температуре 920-970° С хлоровоздушной смесью, содержащей 80 об.% Cl2 и 20 об.% воздуха. Степень хлорирования диоксида кремния составила 93,4%. Фракционной конденсацией компонентов парогазовой смеси хлориды металлов-примесей (FеСl3, АlСl3, хлориды хрома, марганца, магния и др.) отделили от технического тетрахлорида кремния, из которого после очистки дистилляцией и ректификацией получили 201 г очищенного SiCl4, в котором содержания железа и алюминия составили <0,001 мас.% каждого, содержание хлора - 0,02 мас.%.

Полученный тетрахлорид кремния испарили, потоком транспортирующего воздуха пары подали в горелку, где провели парофазный гидролиз SiCl4 в водородовоздушном пламени при температуре 1150-1200° С. Из продуктов реакции выделили 67 г аэросила, величина удельной поверхности продукта, определенная методом BET на приборе ГХП, составила 270 м2/г. Продукт такого качества используется как наполнитель в производстве резинотехнических изделий, пластмасс, как загуститель красок, смазок и других жидкостей.

Полученная газовая смесь (590 л) после выделения аэросила содержит (об.%): НСl - 18; Н2O - 4; азот и воздух - остальное. Такая газовая смесь, разбавленная горячими топочными газами до 6-10 об.% НСl, обеспечивает глубокое обезвоживание карналлита с минимальным гидролизом хлористого магния.

Таким образом, описанная выше технологическая схема позволяет решить задачу переработки серпентинита с повышением комплексности использования сырья при упрощении подготовки хлора и хлористого водорода к применению в процессах получения НСl и обезвоживания карналлита. При этом, по сравнению со способом Noranda, достигается уменьшение количества отходов производства вследствие возможности использования диоксида кремния для производства аэросила и железоникелевого концентрата для получения никеля или ферроникеля.

Похожие патенты RU2241670C1

название год авторы номер документа
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ РУДЫ, СОДЕРЖАЩЕЙ СИЛИКАТЫ МАГНИЯ 2006
  • Фрейдлина Руфина Григорьевна
  • Гулякин Александр Илларионович
  • Овчинникова Надежда Борисовна
  • Сабуров Лев Николаевич
  • Дудина Марина Владимировна
  • Яковлева Светлана Анатольевна
RU2332474C2
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ СЕРПЕНТИНИТА 2007
  • Фрейдлина Руфина Григорьевна
  • Овчинникова Надежда Борисовна
  • Гулякин Александр Илларионович
  • Сабуров Лев Николаевич
  • Ряпосов Юрий Анатольевич
RU2356836C1
СПОСОБ ПРОИЗВОДСТВА МАГНИЯ И ХЛОРА ИЗ ОКСИДНО-ХЛОРИДНОГО СЫРЬЯ 2008
  • Тетерин Валерий Владимирович
  • Сизиков Игорь Анатольевич
  • Шундиков Николай Александрович
  • Бездоля Илья Николаевич
  • Кирьянов Сергей Вениаминович
  • Гладикова Любовь Анатольевна
RU2402642C2
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ СЕРПЕНТИНИТА 2020
  • Мохирева Наталья Леонидовна
  • Низов Василий Александрович
  • Миролюбов Виталий Романович
RU2739046C1
СПОСОБ ПРОИЗВОДСТВА МАГНИЯ ИЗ ОКСИДНО-ХЛОРИДНОГО СЫРЬЯ 2001
  • Пенский А.В.
  • Шундиков Н.А.
  • Курносенко В.В.
  • Ельцов Б.И.
  • Артамонов В.В.
  • Бездоля И.Н.
RU2186155C1
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ СИЛИКАТОВ МАГНИЯ 2005
  • Щелконогов Анатолий Афанасьевич
  • Мальцев Николай Александрович
  • Гулякин Александр Илларионович
  • Щелконогов Максим Анатольевич
  • Киселев Василий Александрович
  • Сабуров Лев Николаевич
  • Фрейдлина Руфина Григорьевна
  • Малиновская Елена Александровна
  • Яковлева Галина Аркадьевна
RU2290457C2
СПОСОБ ПОЛУЧЕНИЯ МАГНИЯ ИЗ СЕРПЕНТИНИТА 2003
  • Пенский А.В.
  • Шундиков Н.А.
  • Гладикова Л.А.
RU2244044C1
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ СЕРПЕНТИНИТА С ПОЛУЧЕНИЕМ ЧИСТОГО ДИОКСИДА КРЕМНИЯ 2003
  • Щелконогов А.А.
  • Фрейдлина Р.Г.
  • Тетерин В.В.
  • Гулякин А.И.
  • Сабуров Л.Н.
  • Козлов Ю.А.
  • Кочелаев В.А.
  • Яковлева С.А.
  • Широков Ю.И.
RU2243154C2
СПОСОБ ПРОИЗВОДСТВА МАГНИЯ 1994
  • Пенский А.В.
  • Ельцов Б.И.
  • Тетерин В.В.
  • Бондарев Э.И.
  • Трапезников Ю.Ф.
  • Дятлов В.В.
RU2082826C1
СПОСОБ ПЕРЕРАБОТКИ ЦИРКОНОВОГО КОНЦЕНТРАТА 2010
  • Муклиев Владимир Ильич
  • Овчинников Сергей Евгеньевич
  • Нагаев Тимур Халидович
  • Каримов Ильдар Афлятунович
  • Красилова Наталья Игнатьевна
RU2450974C1

Реферат патента 2004 года СПОСОБ ПЕРЕРАБОТКИ СЕРПЕНТИНИТА

Изобретение относится к области металлургии и химической технологии неорганических веществ, в частности к переработке серпентинита с получением магния и аэросила. Способ включает выщелачивание серпентинита соляной кислотой с получением суспензии, содержащей растворенные хлориды магния и нерастворимый диоксид кремния. Суспензию разделяют на жидкую (хлормагниевый раствор) и твердую (диоксид кремния) фазы. Хлормагниевый раствор очищают от примесей нейтрализацией, осажденные примеси - гидроксиды железа, никеля и хрома - отделяют, раствор хлорида магния перерабатывают с получением обезвоженного карналлита, из которого электролизом получают магний, анодный хлор и отработанный электролит. Приготовленную из диоксида кремния углеродсодержащую шихту хлорируют хлором, полученный тетрахлорид кремния очищают и подвергают парофазному гидролизу с получением аэросила и хлористого водорода, направляемого на приготовление обезвоженного карналлита, после чего хлористый водород поглощают водой и полученной соляной кислотой выщелачивают серпентинит. Изобретение позволяет комплексно использовать сырье. 1 ил.

Формула изобретения RU 2 241 670 C1

Способ переработки серпентинита, включающий выщелачивание соляной кислотой, фильтрование суспензии с получением хлормагниевого раствора и диоксида кремния, очистку фильтрата нейтрализацией, получение обезвоженного карналлита, электролиз карналлита с получением магния, отработанного электролита и хлора, получение из хлора хлористого водорода для обезвоживания карналлита и соляной кислоты для выщелачивания, отличающийся тем, что получение хлористого водорода ведут в две стадии: хлорированием диоксида кремния с получением тетрахлорида кремния и парофазным гидролизом тетрахлорида кремния с получением аэросила и хлористого водорода.

Документы, цитированные в отчете о поиске Патент 2004 года RU2241670C1

BEDARD M
The Production of Magnesium by Noranda
Способ окисления боковых цепей ароматических углеводородов и их производных в кислоты и альдегиды 1921
  • Каминский П.И.
SU58A1
Прибор для промывания газов 1922
  • Блаженнов И.В.
SU20A1
Способ комплексной переработки серпентина с получением соединений магния, активной кремнекислоты и никелевого концентрата 1937
  • Оганесян М.А.
SU52891A1
СПОСОБ ПРОИЗВОДСТВА МАГНИЯ 1994
  • Пенский А.В.
  • Ельцов Б.И.
  • Тетерин В.В.
  • Бондарев Э.И.
  • Трапезников Ю.Ф.
  • Дятлов В.В.
RU2082826C1
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ СЕРПЕНТИНИТА 1992
  • Велинский Вадим Викторович
  • Гусев Геннадий Михайлович
RU2097322C1
СПОСОБ ДИАГНОСТИКИ ОТДАЛЕННЫХ МЕТАСТАЗОВ ЗЛОКАЧЕСТВЕННЫХ НОВООБРАЗОВАНИЙ У ОНКОЛОГИЧЕСКИХ БОЛЬНЫХ 1995
  • Кшивец Олег Михайлович
RU2107295C1
GB 1588211 А, 15.04.1981
ЗВЕНО ГУСЕНИЧНОЙ ЦЕПИ 1992
  • Попов Н.С.
  • Чирков В.В.
RU2033364C1
US 5980854 А, 09.11.1999
УСТРОЙСТВО ДЛЯ ХИРУРГИЧЕСКОГО ЛЕЧЕНИЯ НЕСТАБИЛЬНОСТИ ПОЗВОНОЧНИКА 2002
  • Гиоев П.М.
  • Шаболдо О.П.
RU2240082C2

RU 2 241 670 C1

Авторы

Щелконогов А.А.

Муклиев В.И.

Гулякин А.И.

Козлов Ю.А.

Кочелаев В.А.

Каримов И.А.

Фрейдлина Р.Г.

Даты

2004-12-10Публикация

2003-07-21Подача