Настоящее изобретение относится к области криогенной техники, а именно к технологии сжижения природного газа.
Известны технические решения по организации производства криогенных жидкостей (гелия, жидкого водорода, продуктов воздухоразделения) с использованием холода испарения других сторонних низкотемпературных сред (жидкий азот, жидкий водород и др.) /1-3/.
Рыночная стоимость подобных продуктов достаточно высока, в том числе и вследствие применения в ожижительных циклах необратимо утрачиваемых дорогостоящих расходных низкокипящих компонентов. Применительно к сжиженному природному газу это оказывается основной причиной, снижающей конкурентноспособность конечной продукции, полученной по рассмотренным выше технологиям.
Предложен способ сжижения природного газа, включающий его отбор из магистрального трубопровода или реципиента, дросселирование до промежуточного давления и сжижение в автономном теплообменнике-конденсаторе, охлаждение которого производится жидким азотом, циркулирующим в замкнутом контуре. Конденсация азота после его испарения для последующего возврата в циркуляционный контур осуществляется с помощью криогенной газовой машины - способ-прототип /4/.
Полностью исключая необратимые потери хладоагента, данный способ переносит на конечную стоимость продукта дополнительные удельные энергозатраты, связанные с функционированием криогенной газовой машины.
Указанного недостатка лишен предлагаемый энергосберегающий способ сжижения природного газа, в основу которого положен принцип совмещения двух технологических процессов: получения газообразного аргона высокого (низкого) давления из жидкого аргона и сжижения природного газа.
Предлагаемый способ заключается в следующем. Природный газ из магистрального трубопровода или реципиента после рекуперативного теплообменника поступает в теплообменник-конденсатор, где конденсируется и переохлаждается за счет теплообмена с жидким аргоном высокого давления, направляемым в теплообменник-конденсатор из стороннего криогенного резервуара, заполненного жидким аргоном. По мере накопления сжиженного природного газа в межтрубном пространстве теплообменника-конденсатора он после дросселирования до промежуточного давления, определяемого эксплуатационными параметрами приемной емкости, сливается в хранилище жидкого природного газа. Нагревшийся же в результате теплообмена газообразный аргон высокого давления из теплообменника-конденсатора, пройдя рекуперативный теплообменник, поступает в рампу высокого давления для заполнения продукционных баллонов (реципиентов). При этом для обеспечения непрерывности ведения процесса конденсация природного газа осуществляется в межтрубном пространстве одного из двух параллельно установленных теплообменников-конденсаторов, включаемых в работу поочередно по мере забивки одного из них отложениями воды и диоксида углерода в виде снега.
В аргонной части технологии осуществления способа возможно также иное технологическое построение процесса.
Жидкий аргон низкого давления из расходной емкости после испарения и нагрева в теплообменнике-конденсаторе и рекуперативном теплообменнике непосредственно направляется потребителю, минуя стадию консервации и баллонного хранения.
Предлагаемый энергосберегающий способ получения сжиженного природного газа лишен дополнительных энергозатрат на реализацию и обеспечивает возможность производства как газообразного аргона, так и сжиженного природного газа по минимальным потребительским ценам.
На фиг.1, 2 приведены возможные схемные варианты практической реализации предлагаемого способа.
В соответствии со схемой, показанной на фиг.1, природный газ высокого давления из магистрального газопровода 1, пройдя рекуперативный теплообменник 9, поступает в межтрубное пространство одного из двух параллельно подключенных кожухотрубных теплообменников-конденсаторов 2, где за счет теплообмена с жидким аргоном конденсируется, переохлаждается и после снижения давления на дросселирующем устройстве 5 направляется в емкость - хранилище сжиженного природного газа 8.
Одновременно с этим жидкий аргон из криогенного резервуара 3 после повышения давления в жидкостном насосе высокого давления 4 поступает в трубное пространство кожухотрубного теплообменника-конденсатора 2 и далее в рекуперативный теплообменник 9.
Нагретым в результате теплообмена с природным газом аргоном высокого давления из единой рампы заполняются баллоны для хранения сжатого газа 6 и реципиенты 7.
В аргонной части технологии осуществления способа возможно также иное технологическое построение процесса - фиг.2.
В этом случае жидкий аргон низкого давления из криогенного резервуара 3 после испарения и нагрева в кожухотрубном теплообменнике-конденсаторе 2 и рекуперативном теплообменнике 6 направляется потребителю.
В то же время природный газ из магистрального газопровода 1 после рекуперативного теплообменника 6 подается в теплообменник-конденсатор 2 и через дроссель 5 в емкость - хранилище сжиженного природного газа 4.
Пример
Природный газ с давлением 4 МПа и температурой 5°С из магистрального трубопровода с расходом 0.03 кг/с поступает в теплообменник-конденсатор для получения на выходе сжиженного природного газа без паровых включений с давлением 0,1 МПа.
Для достижения этой цели в аппарат необходимо направить количество жидкого аргона с температурой и давлением 15 МПа, определяемое соотношением:
M=m(i0-i1)/i2-i3;
где М - расход жидкого аргона, кг/с;
m - расход природного газа, кг/с;
i0 - энтальпия природного газа при t=5°C и давлении 4 МПа;
i0=1106,4 кДж/кг /5/;
i1 - энтальпия сжиженного природного газа при t=-161,5°С и давлении 0,1 МПа;
i1=285,6 кДж/кг /5/;
i2 - энтальпия газообразного аргона высокого давления при t=-5°С и давлении 15 МПа;
i2=299,77 кДж/кг /6/;
i3 - энтальпия жидкого аргона высокого давления при t=-185°С и давлении 15 МПа;
i3=83,19 кДж/кг /6/.
Предлагаемый способ сжижения позволяет, полностью отказавшись от дополнительных внешних источников энергообеспечения, при производстве каждого кг товарного газообразного аргона высокого давления получать не менее 0,26 кг сопутствующей продукции - сжиженного природного газа.
В случае использования в качестве хладагента жидкого аргона низкого давления (0,6 МПа) выход сжиженного природного газа составляет 0,28 кг на кг товарного газообразного аргона низкого давления.
Источники информации
1. Справочник по физико-техническим основам криогенной техники, под редакцией М.П.Малкова, M., Издательство Энергия, 1978 г.
2. Гальперин И.И., Ильинский А.А., Алмазов О.А. и др., «Жидкий водород». M., Химия, 1980.
3. Авторское свидетельство, №10200685, «Способ регазификации криопродукта». Опубликовано 30.05.1983 г.
4. Авторская заявка на изобретение, №2003100566, «Способ сжижения при родного газа с применением криогенной машины и установка для его осуществления». Опубликована 10.08.2004 г.
5. Сычев В.В. и др. ГСССД., «Термодинамические свойства метана». М:, Издательство Стандартов. 1979.
6. Теплофизические свойства криопродуктов. Л.А.Акулов, Е.И.Борзенко В.Н.Новотельнов, А.В.Зайцев. СПб., Политехника, 2001.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ УЛАВЛИВАНИЯ ГАЗООБРАЗНЫХ ПОТЕРЬ СЖИЖЕННЫХ ГАЗОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1995 |
|
RU2068160C1 |
Способ сжижения природного газа | 2022 |
|
RU2803363C1 |
СПОСОБ СЖИЖЕНИЯ ПРИРОДНОГО ГАЗА НА АВТОГАЗОНАПОЛНИТЕЛЬНОЙ КОМПРЕССОРНОЙ СТАНЦИИ | 2005 |
|
RU2295678C2 |
СПОСОБ ВЫДЕЛЕНИЯ СЖИЖЕННЫХ УГЛЕВОДОРОДОВ ИЗ ПРИРОДНОГО ГАЗА | 1999 |
|
RU2168683C2 |
Способ производства сжиженного природного газа | 2016 |
|
RU2636966C1 |
СПОСОБ СЖИЖЕНИЯ ПРИРОДНОГО ГАЗА | 2010 |
|
RU2429434C1 |
СПОСОБ ЗАПОЛНЕНИЯ ЕМКОСТИ СЖАТЫМ ГАЗОМ | 1998 |
|
RU2133403C1 |
СПОСОБ СЖИЖЕНИЯ ПРИРОДНОГО ГАЗА | 2004 |
|
RU2258186C1 |
Способ переработки магистрального природного газа с низкой теплотворной способностью | 2016 |
|
RU2615092C9 |
СПОСОБ ЧАСТИЧНОГО СЖИЖЕНИЯ ПРИРОДНОГО ГАЗА | 2017 |
|
RU2645095C1 |
Изобретение относится к области криогенной техники, а именно технологии сжижения природного газа. Природный газ из магистрального трубопровода или реципиента дросселируется и поступает в межтрубное пространство одного из двух параллельно установленных теплообменников-конденсаторов, включаемых в работу поочередно по мере забивки одного из них отложениями воды и диоксида углерода в виде снега, где конденсируется и переохлаждается за счет теплообмена с жидким аргоном высокого (низкого) давления, направляемым в трубное пространство теплообменника-конденсатора. Сжиженный природный газ и газообразный аргон высокого давления выступают в качестве самостоятельных товарных продуктов, накапливающихся соответственно в криогенном резервуаре - хранилище и баллонах (реципиентах) для сжатого газа. Использование изобретения позволит снизить энергозатраты. 2 ил.
Способ сжижения природного газа, включающий отбор газа из магистрального трубопровода или реципиента и последующее дросселирование до промежуточного давления, конденсацию природного газа в межтрубном пространстве одного из двух параллельно установленных теплообменников-конденсаторов, включаемых в работу поочередно по мере забивки одного из них отложениями воды и диоксида углерода в виде снега, отличающийся тем, что охлаждение производится жидким аргоном высокого давления, поступающим в трубное пространство аппарата, при этом сжиженный природный газ и газообразный аргон высокого давления выступают в качестве самостоятельных товарных продуктов, накапливающихся, соответственно, в криогенном резервуаре-хранилище и баллонах (реципиентах) для сжатого газа.
RU 2003100566 А, 10.08.2004 | |||
СПОСОБ СЖИЖЕНИЯ ПРИРОДНОГО ГАЗА | 1999 |
|
RU2168124C2 |
СПОСОБ РАБОТЫ ВИХРЕВОГО ОЖИЖАЮЩЕГО УСТРОЙСТВА И ВИХРЕВОЕ ОЖИЖАЮЩЕЕ УСТРОЙСТВО | 2002 |
|
RU2254526C2 |
US 4399659 A, 23.08.1983 | |||
US 3914949 A, 28.10.1975. |
Авторы
Даты
2009-05-27—Публикация
2007-01-12—Подача