Изобретение относится к области металлургии, конкретно к технологии производства холоднокатаного проката повышенной прочности из низколегированной стали, предназначенного для изготовления деталей автомобиля методом штамповки.
Одним из определяющих качеств автолиста является его способность к вытяжке при штамповке деталей автомобиля. Холоднокатаные полосы с повышенной прочностью и высокой способностью к вытяжке в зависимости от класса прочности должны соответствовать определенному комплексу механических свойств, например согласно требованиям европейских стандартов SEW 094 (таблица 1):
Известен способ производства холоднокатаных листов, включающий непрерывную разливку стальных слябов, нагрев слябов до 1150-1240°С, горячую прокатку с температурой конца прокатки не ниже 870°С, охлаждение полос водой до 550-730°С, смотку в рулон, холодную прокатку с суммарным обжатием не менее 70%, отжиг при 700-750°С с выдержкой при этой температуре 11-34 часов, дрессировку полос ведут с обжатием 0,4-1,2%. Слябы разливают из стали следующего химического состава, мас.%:
Углерод - 0,002-0,007
Кремний - 0,005-0,05
Марганец - 0,08-0,16
Алюминий - 0,01-0,05
Титан-0,05 - 0,12
Фосфор - не более 0,015
Сера - не более 0,010
Хром - не более 0,04
Никель - не более 0,04
Медь - не более 0,04
Азот - не более 0,006
Железо - остальное
[Патент РФ №2197542, МПК С21D 8/04, опубл. 27.01.2003].
Недостаток известного способа состоит в том, что он не обеспечивает требуемого уровня механических свойств проката классов прочности от 220 до 300.
Известен способ производства листовой стали для холодной вытяжки, включающий горячую прокатку непрерывно-литых слябов из малоуглеродистой стали, травление, многопроходную холодную прокатку с суммарным обжатием 75%, рекристаллизационный отжиг рулонов в колпаковой печи с нагревом за несколько стадий: нагрев со средней скоростью 70-80°С/ч до температуры 490-510°С, повторный нагрев со средней скоростью 3-4°С/ч до промежуточной температуры 540-560°С и окончательный нагрев со средней скоростью 50-55°С/ч до температуры 700-720°С, при которой рулоны выдерживают в течение 12-18 часов. Слябы разливают из стали следующего химического состава, мас.%:
Углерод - 0,025-0,050
Кремний - 0,003-0,01
Марганец-0,12-0,19
Алюминий - 0,02-0,05
Азот - не более 0,011
Железо - остальное
[Патент РФ №2255988, МПК C21D 8/04, опубл. 10.07.2005].
Недостаток известного способа состоит в том, что он не обеспечивает требуемого уровня механических свойств классов прочности от 220 до 300.
Наиболее близким по технической сущности к предлагаемому изобретению является способ производства холоднокатаной полосы из стали, содержащей, мас.%:
Углерод≤0,09
Марганец - 0,02-1,0
Кремний≤0,25
Алюминий - 0,02-0,08
Фосфор - 0,04-0,10
Сера≤0,025
Ванадий 0,005-0,05
Молибден 0,005-0,03
Железо и неизбежные примеси - остальное,
прокатывают в горячем состоянии, смотку в рулон производят при 500-600°С, холодную прокатку ведут с обжатием 60-80%. Рекристаллизационный отжиг в колпаковой печи производят с окончательной выдержкой при 700-780°С с разными скоростями нагрева в три стадии: до 450°С со скоростью V1=0,8-1,6 град/мин, в промежуточном интервале температур 450-560°С со скоростью V2=0,05-0,08 град/мин, в диапазоне температур 560-700-780°С - со скоростью V3=0,37-0,8 град/мин, после отжига осуществляют дрессировку [Патент РФ №1834723, МПК В21В 1/22, опубл. 15.08.1993 - прототип].
Недостаток известного способа состоит в том, что он обеспечивает получение проката с уровнем механических свойств классов прочности от 220 до 300 при больших производственных издержках, так как сталь легируют дорогостоящими элементами, такими как ванадий и молибден, а также используют энергоемкий высокотемпературный отжиг в колпаковых печах при 700-780°С.
Задача, на решение которой направлено изобретение, заключается в получении холоднокатаного проката повышенной прочности, предназначенного для холодной штамповки, при снижении производственных издержек и энергозатрат.
Техническим результатом предлагаемого изобретения является повышение прочностных характеристик стали при сохранении штампуемости, получение проката требуемого класса прочности, а также снижение производственных издержек и энергозатрат. Снижение производственных издержек и энергозатрат заключается в оптимизации химического состава стали без применения дорогостоящих легирующих элементов, таких как ванадий и молибден, и использовании низкотемпературного отжига в колпаковых печах при температуре 600-700°С.
Указанный результат достигается тем, что в способе производства холоднокатаной полосы для холодной штамповки, включающем выплавку стали, разливку слябов, горячую прокатку слябов в полосы, охлаждение водой, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг в колпаковой печи и дрессировку, согласно изобретению выплавляют сталь, содержащую следующие компоненты, мас.%:
Углерод - 0,025-0,10%
Кремний - не более 0,30%
Марганец - 0,41-0,70%
Фосфор - 0,04-0,12%
Алюминий - 0,01-0,08%
Азот - не более 0,009%
Железо и неизбежные примеси - остальное,
горячую прокатку проводят с температурой конца прокатки 825-890°С, смотку горячекатаных полос ведут при температуре 505-630°С, рекристаллизационный отжиг осуществляют при температуре 600-700°С с продолжительностью 7-20 часов, дрессировку полос производят с обжатием 0,8-2,1%. Сталь дополнительно содержит 0,0008-0,0030 мас.% бора. Содержание углерода и фосфора связано с требуемым минимальным пределом текучести (классом прочности) следующими зависимостями:
где [С], [Р] - содержание углерода и фосфора в стали, %;
0,0005; 0,065; 0,05 - эмпирические коэффициенты, %;
Кпр - безразмерный показатель, численно равный требуемому минимальному пределу текучести.
Сущность изобретения состоит в следующем. На механические свойства холоднокатаной листовой стали влияют как химический состав стали, так и режимы деформационно-термической обработки.
Углерод - один из упрочняющих элементов. При содержании углерода менее 0,025% прочностные свойства стали ниже допустимого уровня. Увеличение содержания углерода более 0,10% приводит к снижению пластичности стали, что недопустимо.
Кремний в стали применен как раскислитель и легирующий элемент.При содержании кремния более 0,30% резко снижается пластичность, имеет место охрупчивание стали.
Марганец обеспечивает получение заданных механических свойств. При содержании марганца менее 0,41% прочность стали ниже допустимой. Увеличение содержания марганца более 0,70% чрезмерно упрочняет сталь, ухудшает ее пластичность.
Алюминий введен в сталь как раскислитель. При содержании алюминия менее 0,01% снижается пластичность стали, сталь становится склонной к старению. Увеличение содержания алюминия более 0,08% приводит к ухудшению комплекса механических свойств.
Азот упрочняет сталь. При содержании азота более 0,009% сталь становится склонной к старению.
Упрочнение стали создает фосфор, который повышает твердость феррита и усиливает выделение дисперсных карбидных включений. Одновременно фосфор улучшает пластичность и штампуемость стали. При содержании фосфора менее 0,04% прочность стали ниже допустимой. Увеличение содержания фосфора более 0,12% чрезмерно упрочняет сталь, ухудшает ее пластичность.
Наличие в стали бора в пределах 0,0008-0,0030% исключает сегрегацию фосфора и предотвращает попадание фосфора на границы ферритных зерен, тем самым способствует упрочнению стали.
Горячая прокатка с температурами конца прокатки 825-890°С и смотки 505-630°С обеспечивает формирование оптимальной текстуры металла, которая после холодной прокатки и термообработки по предложенным режимам трансформируется в текстуру с преобладающей кристаллографической ориентировкой <111>, а также микроструктуры с высокой стабильностью и равномерностью. Ниже и выше заявленных температурных пределов технический результат не достигался, а именно сталь приобретала структуру с неблагоприятной для холодной штамповки текстурой и неравномерную микроструктуру ферритной матрицы.
В результате рекристаллизационного отжига при температуре 600-700°С в течение 7-20 часов формируется однородная микроструктура с баллом зерна 9-10 и минимальным выделением структурно-свободного цементита. Увеличение температуры отжига выше заявленных параметров не обеспечивает необходимый уровень механических свойств. Снижение температуры отжига ниже 600°С и уменьшение времени выдержки менее 7 часов в колпаковых печах приводит к появлению в микроструктуре отдельных прерывистых строчек рекристаллизованных зерен, что ухудшает штампуемость проката. Увеличение времени выдержки более 20 часов неоправданно удлиняет отжиг.
Окончательно механические свойства формируются при дрессировке. Дрессировка полос с обжатием 0,8-2,1% обеспечивает оптимальный уровень механических свойств. Обжатие менее 0,8% приводит к появлению площадки текучести на диаграмме растяжения при испытании на разрыв. Дрессировка с обжатием не более 2,1% ограничена техническими возможностями дрессировочного стана.
Комплекс оптимизированного химического состава без использования дорогостоящих легирующих элементов, таких как ванадий и молибден, и низкотемпературного отжига при температуре 600-700°С приводит к снижению производственных издержек и энергозатрат при условии обеспечения высоких прочностных характеристик стали при сохранении штампуемости и получении проката требуемого класса прочности.
Экспериментально установлено, что для получения требуемого минимального предела текучести содержание углерода и фосфора должно быть регламентировано в соответствии с зависимостями: [С]=(0,0005·Кпр - 0,065)±0,02,%;
[Р]=(0,0005·Кпр - 0,05)±0,20,%.
Примеры реализации способа
В кислородном конвертере осуществляли выплавку стали, химический состав которых приведен в таблице 2.
Выплавленную сталь разливали на машине непрерывного литья в слябы сечением 250×1280-1420 мм. Слябы нагревали в нагревательной печи с шагающими балками до температуры 1250°С в течение 2,5-3,5 часа и прокатывали на непрерывном широкополосном стане 2000 в полосы толщиной 2,5-3,5 мм. Температура полос на выходе из последней клети стана регламентирована. Горячекатаные полосы на отводящем рольганге охлаждали водой до определенных температур и сматывали в рулоны. Охлажденные рулоны подвергали соляно-кислотному травлению в непрерывном травильном агрегате. Затем травленые полосы прокатывали на 5-клетевом стане до толщины 1,0-1,8 мм. Холоднокатаные полосы отжигали в колпаковых печах с водородной защитной атмосферой. Отожженные полосы дрессировали с заданным обжатием.
В таблицах 3-4 приведены технологические параметры и механические свойства предложенного способа (плавки 2-4), способа при запредельных значениях заявленных параметров (плавки 1 и 5) и способа-прототипа (плавка 6).
Примеры реализации зависимостей (1)-(2) приведены в таблицах 5-6.
Из таблиц 2-6 видно, что в случае реализации предложенного способа (плавки 2-4) и зависимостей (1)-(2) достигаются механические свойства с классами прочности от 220 до 300. При запредельных значениях заявленных параметров (плавки 1 и 5) классы прочности от 220 до 300 не достигаются.
Из проката изготавливали штамповкой высоконагруженные детали автомобиля, такие как усилители корпуса и несущие детали рамы автомобиля; замечаний к штамповке у потребителя не было.
Ткп, °С
σв (Rm),
Н/мм2
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕОЦИНКОВАННОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ | 2008 |
|
RU2361936C1 |
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ | 2007 |
|
RU2358025C1 |
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕОЦИНКОВАННОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ | 2008 |
|
RU2361935C1 |
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕОЦИНКОВАННОЙ ПОЛОСЫ (ВАРИАНТЫ) | 2010 |
|
RU2445380C1 |
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ПОЛОСЫ (ВАРИАНТЫ) | 2010 |
|
RU2433192C1 |
СПОСОБ ПРОИЗВОДСТВА СТАЛЬНОЙ ПОЛОСЫ (ВАРИАНТЫ) | 2011 |
|
RU2478729C2 |
СПОСОБ ПРОИЗВОДСТВА ХОДОДНОКАТАННОГО ВЫСОКОПРОЧНОГО ЛИСТОВОГО ПРОКАТА ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ | 2019 |
|
RU2747103C1 |
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОГО ВЫСОКОПРОЧНОГО ПРОКАТА ДЛЯ ХОЛОДНОЙ ШТАМПОВКИ | 2014 |
|
RU2562203C1 |
Способ производства высокопрочной особонизкоуглеродистой холоднокатаной стали с высокой пластичностью | 2021 |
|
RU2764618C1 |
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОГО ПРОКАТА | 2008 |
|
RU2361933C1 |
Изобретение относится к области металлургии, конкретно к технологии производства холоднокатаной полосы повышенной прочности из низколегированной стали, предназначенной для изготовления деталей автомобиля методом штамповки. Для повышения прочностных характеристик при сохранении штампуемости и получения требуемого класса прочности, соответствующего требуемому минимальному пределу текучести, осуществляют выплавку стали, содержащей, мас.%: 0,025-0,10 углерода; не более 0,30 кремния; 0,41-0,70 марганца; 0,04-0,12 фосфора; 0,01-0,08 алюминия; не более 0,009 азота; железо и неизбежные примеси - остальное, разливку слябов, горячую прокатку слябов в полосы с температурой конца прокатки 825-890°С, охлаждение водой, смотку полос в рулоны при температуре 505-630°С, холодную прокатку, рекристаллизационный отжиг в колпаковой печи при температуре 600-700°С с продолжительностью 7-20 часов и дрессировку с обжатием 0,8-2,1%. Сталь дополнительно содержит 0,0008-0,0030 мас.% бора. Содержание углерода и фосфора связано с требуемым минимальным пределом текучести (классом прочности) зависимостями [С]=(0,0005·Кпр-0,065)±0,02,% и [Р]=(0,0005·Кпр-0,05)±0,20,%, где [С], [Р] - содержание углерода и фосфора в стали, %; 0,0005; 0,065; 0,05 - эмпирические коэффициенты, %; Кпр - безразмерный показатель, численно равный требуемому минимальному пределу текучести. 3 з.п.ф-лы, 6 табл.
1. Способ производства холоднокатаной полосы повышенной прочности из низколегированной стали для холодной штамповки, включающий выплавку стали, разливку слябов, горячую прокатку слябов в полосы, охлаждение водой, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг в колпаковой печи и дрессировку, отличающийся тем, что выплавляют сталь, содержащую следующие компоненты, мас.%:
при этом горячую прокатку проводят с температурой конца прокатки 825-890°С, смотку горячекатаных полос ведут при температуре 505-630°С, рекристаллизационный отжиг осуществляют при температуре 600-700°С, а дрессировку полос производят с обжатием 0,8-2,1%.
2. Способ по п.1, отличающийся тем, что сталь дополнительно содержит 0,0008-0,0030 мас.% бора.
3. Способ по п.1 или 2, отличающийся тем, что содержание углерода и фосфора связано с требуемым минимальным пределом текучести следующими зависимостями:
[С]=(0,0005·Кпр-0,065)±0,02, мас.%;
[Р]=(0,0005·Кпр-0,05)±0,20, мас.%,
где [С] - содержание углерода в стали, мас.%;
[Р] - содержание фосфора в стали, мас.%,
0,0005; 0,065; 0,05 - эмпирические коэффициенты, %;
Кпр - безразмерный показатель, численно равный требуемому минимальному пределу текучести.
4. Способ по п.1, отличающийся тем, что продолжительность рекристаллизационного отжига составляет 7-20 ч.
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ СТАЛИ ДЛЯ ГЛУБОКОЙ ВЫТЯЖКИ | 2004 |
|
RU2281338C2 |
RU 22424524 С1, 20.12.2004 | |||
СПОСОБ ГОРЯЧЕЙ ПРОКАТКИ ПОЛОС ИЗ СТАЛЕЙ С КАРБОНИТРИДНЫМ УПРОЧНЕНИЕМ | 2001 |
|
RU2195505C1 |
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ СТАЛИ ДЛЯ ГЛУБОКОЙ ВЫТЯЖКИ | 2004 |
|
RU2255989C1 |
Устройство двукратного усилителя с катодными лампами | 1920 |
|
SU55A1 |
ВЕДУЩИЙ МОСТ ТРАНСПОРТНОГО СРЕДСТВА | 1993 |
|
RU2086425C1 |
Авторы
Даты
2009-07-20—Публикация
2008-01-09—Подача