СПОСОБ ПРОИЗВОДСТВА СТАЛЬНОЙ ПОЛОСЫ (ВАРИАНТЫ) Российский патент 2013 года по МПК C22C38/42 C21D8/02 C21D9/46 

Описание патента на изобретение RU2478729C2

Изобретение относится к области металлургии, конкретно к способу производства стальных холоднокатаных и горячеоцинкованных полос с дополнительным упрочнением при сушке лакокрасочного покрытия на штампованном изделии (ВН-эффектом). Стальные полосы предназначены для изготовления изделий автомобиля методом штамповки.

ВН-эффект - это упрочнение, происходящее в процессе сушки лакокрасочного покрытия на штампованной детали. В сталях с ВН-эффектом сочетаются высокие пластические свойства в состоянии поставки и высокие прочностные характеристики после штамповки и сушки. Высокопрочные стали с ВН-эффектом устойчивы к вмятинам, что позволяет уменьшить толщину листовой стали, а значит приводит к экономии топлива. ВН-эффект в прокате обусловлен искусственным старением, связанным с наличием свободных атомов углерода в твердом растворе феррита, которые образуют облака Котрелла - тончайшие выделения карбидов. Эти карбиды закрепляют подвижные дислокации в феррите при повышенной температуре, что приводит к упрочнению штампованных деталей при сушке.

Одним из определяющих качеств стальных полос для штамповки является способность к вытяжке, сочетание прочностных и пластических характеристик, полосы должны соответствовать определенному комплексу механических свойств, например, согласно требований стандартов SEW 094, RENAULT 11-04-804 (таблица 1).

Таблица 1 Вид продукции Стандарт Марка Предел текучести σ0,2 (Rel), Н/мм2 Прочность при растяжении (Rm), Н/мм2 Относительное удлинение A80, % r90 n90 Повышение предела текучести за счет термообработки BH2, Н/мм2 Не менее He менее He менее Не менее Холоднока-
таный
SEW 094 ZStE 180 BH 180-240 300-380 32 - - 40
ZStE 220 BH 220-280 320-400 30 - - 40 ZStE 260 BH 260-320 360-440 28 - - 40 ZStE 300 BH 300-360 400-480 26 - - 40 Холоднока-
таный и оцинкован-
ный
RENAULT 11-04-804 E 220 BH 220-260 340-420 32 1,7 0,19 40
E 260 BH 260-310 370-440 32 1,5 0,17 40

Известен способ производства листовой стали, включающий разливку слябов из стали, содержащей, мас.%:

Углерод 0,002-0,007 Кремний 0,005-0,050 Марганец 0,08-0,16 Алюминий 0,0-0,05 Титан 0,05-0,12 Фосфор не более 0,015 Сера 0,003-0,010 Хром не более 0,04 Никель не более 0,04 Медь не более 0,04 Азот не более 0,006 Железо остальное,

нагрев слябов до 1150-1240°С, горячую прокатку с температурой конца прокатки не ниже 870°С, охлаждение водой до 550-730°С, смотку в рулоны, холодную прокатку с суммарным обжатием не менее 70%, отжиг при 700-750°С с выдержкой при этой температуре в течение 11-34 часов, дрессировку с обжатием 0,4-1,2% [Патент РФ №2197542 МПК C21D 8/04, C21D 9/48, 28.06.2001 г.].

Недостатком известного способа производства является низкая прочность, высокая себестоимость стали из-за наличия дорогостоящего титана, низкая прочность, отсутствие ВН-эффекта, а также повышенная отсортировка металла по дефектам «плена» и «неметаллические включения».

Известен способ производства горячеоцинкованного металла высших категорий вытяжки, включающий горячую прокатку с температурой смотки 500±30°С, холодную прокатку с суммарным обжатием не более 70%, отжиг в колпаковой печи в защитной атмосфере с одноступенчатым нагревом при температуре 680-710°С и термическую обработку металла в линии агрегата непрерывного горячего цинкования при температурах 490-510°С со скоростью нагрева 10,8-11,4°С/с на первой стадии, при температурах 520-560°С со скоростью нагрева 0,4-0,8°С/с на второй стадии и выдержкой при этих температурах 85 с, охлаждение, перестаривание и нанесение тончайшего цинкового покрытия [Патент РФ №2128719 МПК C21D 9/48, C21D 8/04, С23С 2/40, 10.04.1999 г.].

Недостатком известного способа производства является низкая прочность, отсутствие ВН-эффекта.

Наиболее близким по технической сущности к предлагаемому изобретению является способ производства стального листа с высокой способностью к упрочнению при сушке, характеризующийся содержанием в стали следующих компонентов, мас.%:

Углерод 0,0001-0,2 Кремний ≤2,0 Марганец ≤3,0 Фосфор ≤0,15 Сера ≤0,015 Хром ≤2,5 Никель + медь 0,001-1,0 Алюминий ≤0,1 Азот 0,001-0,1 Титан 0,0001-0,1 Ниобий 0,001-0,03 Железо и неизбежные примеси остальное,

включающий непрерывную разливку слябов, нагрев слябов при температуре 1200°С и выше, горячую прокатку, которую заканчивают при температуре не ниже 600°С, охлаждение водой, смотку в рулоны при температуре 550°С или ниже, холодную прокатку с суммарным обжатием 95% или ниже, рекристаллизационный отжиг, а в случае проведения его в проходных печах - при температуре 600-1100°С и затем нанесение цинкового покрывия, дрессировку полос с обжатием 3% или менее. [ЕР №1306456 А1, C21D 9/46, 02.05.2003 г].

Недостатком известной стали и способа производства является низкая прочность.

Техническим результатом предлагаемого изобретения является оптимизация состава стали и технологии производства стальных полос, холоднокатаных и горячеоцинкованных, с повышенными прочностными характеристиками, с хорошей штампуемостью, с упрочнением при сушке лакокрасочного покрытия в готовых деталях (с ВН-эффектом), а так же снижение производственных издержек за счет исключения использования дорогостоящих легирующих элементов, таких как титан, ниобий.

Технический результат достигается тем, что способ производства стальной полосы включает выплавку стали, содержащей компоненты при следующем соотношении, мас.%:

Углерод 0,001-0,015 Кремний 0,001-0,50 Марганец 0,05-1,0 Фосфор не более 0,12 Сера не более 0,025 Хром не более 0,30 Никель не более 0,30 Медь не более 0,19 Алюминий от более 0,02 до 0,15 Азот не более 0,010 Железо и неизбежные примеси, в том числе титан и ниобий, остальное,

при этом выполняется соотношение [Mn]/[S]≥4,8 и сумма содержаний титана и ниобия составляет не более 0,012 мас.%, при этом сталь может дополнительно содержать 0,0005-0,005% бора и/или 0,0005-0,005% кальция, непрерывную разливку слябов. Нагрев слябов ведут при температуре от 1060 до менее 1200°С, горячую прокатку заканчивают при температуре 800-930°С, затем полосы охлаждают водой и смотку полос в рулоны осуществляют при температуре от более 550 до 730°С. После проведения солянокислотного травления осуществляют холодную прокатку с суммарным обжатием 40-95%. Далее, по первому варианту, осуществляют рекристаллизационный отжиг в колпаковых печах при температуре 600-750°С с выдержкой при этой температуре 6-35 часов, затем производят дрессировку полос.

По второму варианту осуществления способа с нанесением цинкового покрытия, рекристаллизационный отжиг осуществляют в проходных печах при температуре 750-900°С и затем производят дрессировку полос.

Сущность изобретения состоит в том, что механические свойства стальных полос зависят от химического состава стали и режимов деформационно-термической обработки на прокатных переделах.

Углерод - один из упрочняющих элементов. При содержании углерода менее 0,001% прочность стали ниже допустимой, отсутствует ВН-эффект. Увеличение содержания углерода более 0,015% приводит к снижению пластичности стали. Благодаря наличию в ферритной матрице свободного углерода в результате старения достигается упрочнение в процессе сушки лакокрасочного покрытия (ВН-эффект).

Кремний в стали применен как раскислитель и легирующий элемент. При содержании кремния менее 0,001% не достигается достаточное раскислительное действие. Увеличение содержания кремния более 0,50% приводит к росту количества силикатных неметаллических включений, снижает пластичность и увеличивает охрупчивание стали.

Марганец и фосфор создают твердорастворное упрочнение, за счет чего обеспечивается необходимый комплекс механических свойств. При содержании марганца менее 0,05% прочность стали ниже допустимой. Увеличение содержания марганца более 1,0% и фосфора более 0,12% чрезмерно упрочняет сталь, ухудшает ее пластичность и штампуемость.

Сера является примесным элементом и упрочняет ферритную матрицу за счет образования сульфидов марганца. Увеличение содержания серы более 0,025% приводит к снижению пластичности и штампуемости.

Сера интенсивно связывается с марганцем с образованием сравнительно тугоплавких сульфидов марганца MnS. Включения MnS могут служить центрами зарождения других фаз (нитридных, карбидных). При повышенном содержании серы и пониженном содержании марганца сера находится в стали в виде сернистого железа FeS, которое образует с железом легкоплавкую эвтектику, располагающуюся по границам зерен, что приводит к образованию трещин при прокатке. Чтобы этого избежать, содержание марганца и серы связано зависимостью: [Mn]/[S]≥4,8.

Хром, никель, медь упрочняют ферритную матрицу. Содержание хрома, никеля более 0,30% и меди более 0,19% чрезмерно упрочняет сталь, ухудшает ее пластичность.

Алюминий введен в сталь как раскислитель, стабилизирует сталь, предотвращает ее старение. При содержании алюминия менее 0,02% снижается пластичность стали, сталь становится склонной к старению. Увеличение содержания алюминия более 0,15% приводит к ухудшению комплекса механических свойств.

Азот является нитридообразующим элементом, упрочняющим сталь. Увеличение содержания азота более 0,010% приводит к снижению пластичности и способствует старению стали.

Бор препятствует чрезмерному росту ферритных зерен, гомогенизирует микроструктуру. Наличие бора предотвращает образование сегрегации фосфора по границам зерен. При содержании бора менее 0,0005% прочностные свойства проката ниже допустимого уровня. Увеличение содержания бора более 0,005% приводит к снижению пластичности проката.

Кальций в пределах от 0,0005 до 0,005% применяют для повышения эффективности раскисляющего действия алюминия и для улучшения формы включений окислов алюминия, их глобуляризации.

Нагрев слябов до температуры выше 1200°С приводит к растворению в твердом растворе крупных частиц (карбонитридов, карбидов, нитридов), которые в дальнейшем выделяются в виде мелкодисперсных частиц, что приводит к чрезмерному упрочнению стали и ухудшению штампуемости. Снижение температуры нагрева менее 1060°С приводит к ухудшению пластических свойств. Нагрев слябов в температурном интервале 1060-1200°С обеспечивает минимальное окисление стали в процессе нагрева и прокатки.

При температуре конца прокатки менее 800°С и температуре смотки менее 550°С сталь приобретает мелкозернистую микроструктуру и неблагоприятную для холодной штамповки текстуру, ухудшается пластичность проката. При температуре конца прокатки выше 930°С и температуре смотки выше 730°С в стали формируется неравномерная микроструктура с крупными зернами на поверхности полосы, что отрицательно сказывается на штампуемости.

Холодная прокатка с суммарным обжатием 40-95% обеспечивает благоприятную для штамповки текстуру. При запредельных значениях ухудшается пластичность и плоскостность полосы.

Рекристаллизационный отжиг при 600-750°С с выдержкой при этой температуре 6-35 часов - в колпаковых печах или 750-900°С - в непрерывных проходных печах является оптимальным для прохождения в стали первичной рекристаллизации и в определенной степени собирательной рекристаллизации. При недостаточной или чрезмерной температуре отжига формируется нерекристаллизованная или неоднородная микроструктура с разнобальными зернами, что отрицательно сказывается на механических свойствах и штампуемости проката. Выдержка в колпаковых печах менее 6 часов приводит к формированию нерекристаллизованной микроструктуры, а выдержка более 35 часов приводит к неоправданным энергозатратам.

Испытания для определения упрочнения при сушке лакокрасочного покрытия ВН2 (ВН-эффекта) определяли согласно стандарта SEW 094 в следующей последовательности:

1. Образцы растягивали до деформации 2% и определяли Rp2,0 - напряжение при деформации 2%.

2. Образцы отжигали при температуре 170°С в течение 20 минут.

3. Образцы испытывали на растяжение до разрыва и определяли ReL.

4. Рассчитывали ВН2=ReL-Rp2,0

Примеры реализации способа

В кислородном конвертере выплавили 6 опытных плавок стали, химический состав которых приведен в таблице 1.

Выплавленную сталь разливали на машине непрерывного литья в слябы. Слябы нагревали в нагревательной печи с шагающими балками и прокатывали на непрерывном широкополосном стане 2000 в полосы толщиной 2,0-5,5 мм. Горячекатаные полосы на отводящем рольганге охлаждали водой и сматывали в рулоны. Охлажденные рулоны подвергали солянокислотному травлению в непрерывном травильном агрегате. Затем травленые полосы прокатывали на 5-клетевом стане до толщины 0,6-2,0 мм. Полосы отжигали в колпаковых печах с водородной защитной атмосферой или проходных непрерывных печах с нанесением покрытия. Отожженные полосы дрессировали. Деформационно-термические режимы на прокатных переделах приведены в таблице 3.

Механические свойства опытных плавок приведены в таблице 4.

Из таблиц 2-4 видно, что в случае реализации предложенного способа (составы №2-5) достигаются механические свойства с повышенным уровнем прочности, высокой пластичностью и ВН-эффектом более 40 Н/мм2 (предел текучести соответствует 210-330 Н/мм2, относительное удлинение - 29-40%, упрочнение при сушке ВН2 - 40-47 Н/мм2). При запредельных значениях заявленных параметров достигаются свойства либо с низкой прочностью (предел текучести 150 Н/мм2 - состав №1), либо с низкой пластичностью и низким упрочнением при сушке лакокрасочного покрытия (относительное удлинение 25%, ВН2=34 Н/мм2 - состав №6). При использовании способа-прототипа (состав №7) достигаются свойства проката с низкой прочностью (предел текучести 160 Н/мм2).

Стальные полосы, произведенные по предложенной технологии, обладают хорошими показателями по штампуемости, обладают дополнительным упрочнением при сушке лакокрасочного покрытия не менее 40 Н/мм2.

Таблица 2 Химический состав опытных плавок (мас.%)
состава
С Si Mn P S Cr Ni Сu Аl N В Са Mn/S Ti+Nb Железо и неизбеж-
ные примеси
1 0,0005 0,0005 0,04 0,01 0,015 0,01 0,02 0,02 0,04 0,001 - 0,006 2,7 0,013 Ост. 2 0,015 0,001 0,15 0,02 0,010 0,03 0,06 0,09 0,05 0,002 0,0005 0,005 5,0 0,006 Ост. 3 0,010 0,15 0,10 0,05 0,021 0,08 0,10 0,10 0,04 0,004 0,005 - 4,8 0,007 Ост. 4 0,001 0,03 0,50 0,09 0,025 0,15 0,18 0,18 0,10 0,005 - 0,0005 20 0,012 Ост. 5 0,005 0,50 1,00 0,12 0,030 0,30 0,30 0,19 0,15 0,010 - - 33 0,012 Ост. 6 0,016 0,55 1,05 0,13 0,031 0,35 0,35 0,20 0,16 0,011 0,006 - 34 0,014 Ост. 7 0,0034 0,01 0,10 0,009 0,006 0,39 0,01 0,02 0,044 0,0022 - - Не регл. Не регл. Ост. Прототип

Таблица 3 Деформационно-термические режимы на прокатных переделах № состава Вид полосы Температура нагрева сляба, °С Температура конца прокатки, Ткп, °C Температура смотки, Tсм, °C Суммарное обжатие при холодной прокатке, % Температура рекристаллизационного отжига и выдержка 1 х/к 1050 790 495 39 595°С - 5 час 2 х/к 1060 800 500 40 600°С - 6 час 3 х/к 1100 850 600 65 750°С - 35 час 4 оц 1150 900 680 80 750°С 5 оц 1190 930 730 95 900°С 6 оц 1300 935 735 96 905°С х/к 755°С - 36 час 7 х/к 1000-1160 922 730 95 и менее 650-800°С Прототип оц 700-900°С

Таблица 4 Механические свойства опытных плавок № состава Предел текучести σ0,2 (Rel), H/мм2 Прочность при растяжении (Rm), Н/мм2 Относительное удлинение A80, % Коэффициент анизотропии
r90
Коэффициент деформационного упрочнения
n90
Повышение предела текучести за счет термообработки, ВН2, Н/мм2
1 150 (низкое значение) 300 45 2,7 0,25 0 2 210 340 40 2,1 0,21 47 3 250 370 35 2,0 0,20 45 4 270 375 34 1,8 0,19 40 5 330 420 29 1,7 0,18 45 6 340 430 25 (низкое значение) 1,4 0,15 34 (низкое значение) 7 160 (низкое значение) 292 52 нет данных нет данных 42 Прототип

Похожие патенты RU2478729C2

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ ПОЛОСЫ (ВАРИАНТЫ) 2010
  • Кузнецов Виктор Валентинович
  • Егоров Алексей Яковлевич
  • Щелкунов Игорь Николаевич
  • Долгих Ольга Вениаминовна
  • Золотова Лариса Юрьевна
  • Струнина Людмила Михайловна
RU2433192C1
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕОЦИНКОВАННОГО ПРОКАТА ДЛЯ ХОЛОДНОЙ ШТАМПОВКИ 2017
  • Мишнев Петр Александрович
  • Адигамов Руслан Рафкатович
  • Никитин Дмитрий Иванович
  • Антковьяк Александр Александрович
RU2645622C1
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕОЦИНКОВАННОЙ ПОЛОСЫ (ВАРИАНТЫ) 2010
  • Кузнецов Виктор Валентинович
  • Щелкунов Игорь Николаевич
  • Долгих Ольга Вениаминовна
  • Никитин Дмитрий Иванович
  • Серов Сергей Владимирович
  • Сушкова Светлана Андреевна
  • Струнина Людмила Михайловна
RU2445380C1
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ СТАЛИ ДЛЯ ХОЛОДНОЙ ШТАМПОВКИ 2006
  • Немтинов Александр Анатольевич
  • Кузнецов Виктор Валентинович
  • Струнина Людмила Михайловна
  • Степаненко Владислав Владимирович
  • Ефимов Семен Викторович
  • Кузнецов Максим Анатольевич
  • Родионова Ирина Гавриловна
  • Ефимова Татьяна Михайловна
  • Бурко Дмитрий Александрович
  • Пименов Виктор Александрович
RU2313583C2
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ СТАЛИ ДЛЯ ХОЛОДНОЙ ШТАМПОВКИ 2006
  • Немтинов Александр Анатольевич
  • Кузнецов Виктор Валентинович
  • Струнина Людмила Михайловна
  • Шурыгина Марина Викторовна
  • Черноусов Василий Леонидович
  • Рослякова Наталья Евгеньевна
  • Родионова Ирина Гавриловна
  • Шаповалов Энар Тихонович
  • Бурко Дмитрий Александрович
  • Ефимова Татьяна Михайловна
  • Рузаев Дмитрий Григорьевич
  • Чистяков Игорь Петрович
  • Горин Александр Давидович
  • Глинер Роман Ефимович
  • Гусев Юрий Борисович
RU2313584C2
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ СТАЛИ ДЛЯ ГЛУБОКОЙ ВЫТЯЖКИ 2006
  • Куницын Глеб Александрович
  • Злов Владимир Евгеньевич
  • Папшев Андрей Викторович
  • Родионова Ирина Гавриловна
  • Фомин Евгений Савватьевич
  • Бурко Дмитрий Александрович
RU2330887C1
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ 2008
  • Немтинов Александр Анатольевич
  • Кузнецов Виктор Валентинович
  • Струнина Людмила Михайловна
  • Золотова Лариса Юрьевна
  • Долгих Ольга Вениаминовна
  • Ордин Владимир Георгиевич
  • Ефимов Семен Викторович
  • Головко Владимир Андреевич
RU2361934C1
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ 2007
  • Немтинов Александр Анатольевич
  • Кузнецов Виктор Валентинович
  • Струнина Людмила Михайловна
  • Золотова Лариса Юрьевна
  • Долгих Ольга Вениаминовна
  • Лятин Андрей Борисович
  • Головко Владимир Андреевич
  • Родионова Ирина Гавриловна
RU2358025C1
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕОЦИНКОВАННОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ 2008
  • Кузнецов Виктор Валентинович
  • Струнина Людмила Михайловна
  • Шишина Антонина Кирилловна
  • Лятин Андрей Борисович
  • Артюшечкин Александр Викторович
  • Иванов Дмитрий Викторович
  • Кузнецов Анатолий Александрович
  • Никитин Дмитрий Иванович
RU2361936C1
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕОЦИНКОВАННОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ 2014
  • Мишнев Петр Александрович
  • Адигамов Руслан Рафкатович
  • Никитин Дмитрий Иванович
  • Щелкунов Игорь Николаевич
RU2570144C1

Реферат патента 2013 года СПОСОБ ПРОИЗВОДСТВА СТАЛЬНОЙ ПОЛОСЫ (ВАРИАНТЫ)

Изобретение относится к области металлургии, а именно к производству холоднокатаных и горячеоцинкованных стальных полос, обладающих эффектом упрочнения при сушке лакокрасочного покрытия на штампованном изделии (ВН-эффектом). Способ включает выплавку стали, непрерывную разливку слябов, их нагрев, горячую прокатку, охлаждение водой, смотку полос в рулоны, травление, холодную прокатку, рекристаллизационный отжиг, нанесение цинкового покрытия и/или дрессировку. Выплавляют сталь, содержащую, в мас.%: углерод 0,001-0,015, кремний 0,001-0,50, марганец 0,05-1,0, фосфор не более 0,12, сера не более 0,025, хром не более 0,30, никель не более 0,30, медь не более 0,19, алюминий от более 0,02 до 0,15, азот не более 0,010, железо и неизбежные примеси, в том числе, титан и ниобий - остальное, при этом соотношение [Mn]/[S] составляет ≥4,8, а сумма содержаний титана и ниобия составляет не более 0,012 мас.%. Нагрев слябов ведут при температуре от 1060 до менее 1200°С, горячую прокатку заканчивают при температуре 800-930°С, смотку полос ведут при температуре от более 550 до 730°С, а холодную прокатку ведут с суммарным обжатием 40-95%. Рекристаллизационный отжиг осуществляют в колпаковых печах при температуре 600-750°С с выдержкой 6-35 часов или в случае нанесения цинкового покрытия в проходных печах при температуре 750-900°С. Получаемые полосы обладают повышенной прочностью и пластичностью, обеспечивающей хорошую штампуемость, способностью к упрочнению при сушке лакокрасочного покрытия в готовых деталях (ВН-эффектом), а также пониженными производственными издержками за счет исключения использования дорогостоящих легирующих элементов. 2 н. и 2 з.п. ф-лы, 4 табл., 1 пр.

Формула изобретения RU 2 478 729 C2

1. Способ производства стальной полосы, включающий выплавку стали, непрерывную разливку слябов, их нагрев, горячую прокатку, охлаждение водой, смотку полос в рулоны, травление, холодную прокатку, рекристаллизационный отжиг в колпаковых печах и дрессировку, отличающийся тем, что выплавляют сталь, содержащую следующие компоненты, мас.%:
углерод 0,001-0,015 кремний 0,001-0,50 марганец 0,05-1,0 фосфор не более 0,12 сера не более 0,025 хром не более 0,30 никель не более 0,30 медь не более 0,19 алюминий от более 0,02 до 0,15 азот не более 0,010 железо и неизбежные примеси, в том числе, титан и ниобий остальное,


при этом выполняется соотношение [Mn]/[S]≥4,8 и сумма содержаний титана и ниобия составляет не более 0,012 мас.%, нагрев слябов ведут при температуре от 1060 до менее 1200°С, горячую прокатку заканчивают при температуре 800-930°С, смотку полос ведут при температуре от более 550 до 730°С, холодную прокатку ведут с суммарным обжатием 40-95%, а рекристаллизационный отжиг осуществляют при температуре 600-750°С с выдержкой при этой температуре 6-35 ч.

2. Способ по п.1, отличающийся тем, что сталь дополнительно содержит 0,0005-0,005% бора и/или 0,0005-0,005% кальция.

3. Способ производства стальной полосы, включающий выплавку стали, непрерывную разливку слябов, их нагрев, горячую прокатку, охлаждение водой, смотку полос в рулоны, травление, холодную прокатку, рекристаллизационный отжиг в проходных печах, нанесение цинкового покрытия и дрессировку, отличающийся тем, что выплавляют сталь, содержащую следующие компоненты, мас.%:
углерод 0,001-0,015 кремний 0,001-0,50 марганец 0,05-1,0 фосфор не более 0,12 сера не более 0,025 хром не более 0,30 никель не более 0,30 медь не более 0,19 алюминий от более 0,02 до 0,15 азот не более 0,010 железо и неизбежные примеси, в том числе, титан и ниобий остальное,


при этом выполняется соотношение [Mn]/[S]≥4,8 и сумма содержаний титана и ниобия составляет не более 0,012 мас.%, нагрев слябов ведут при температуре от 1060 до менее 1200°С, горячую прокатку заканчивают при температуре 800-930°С, смотку полос ведут при температуре от более 550 до 730°С, холодную прокатку ведут с суммарным обжатием 40-95%, а рекристаллизационный отжиг осуществляют при температуре 750-900°С.

4. Способ по п.3, отличающийся тем, что сталь дополнительно содержит 0,0005-0,005% бора и/или 0,0005-0,005% кальция.

Документы, цитированные в отчете о поиске Патент 2013 года RU2478729C2

ЕР 1306456 A1, 02.05.2003
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВОЙ СТАЛИ 2001
  • Степанов А.А.
  • Ламухин А.М.
  • Степаненко В.В.
  • Кузнецов В.В.
  • Зинченко С.Д.
  • Зиборов А.В.
  • Балдаев Б.Я.
  • Ордин В.Г.
  • Горелик П.Б.
  • Добряков В.С.
  • Долгих О.В.
  • Струнина Л.М.
  • Рябинкова В.К.
  • Трайно А.И.
RU2197542C1
ХОЛОДНОКАТАНЫЙ СТАЛЬНОЙ ЛИСТ С ПРЕКРАСНОЙ СПОСОБНОСТЬЮ К ТЕРМИЧЕСКОМУ УПРОЧНЕНИЮ СТАЛИ ПРИ ОТВЕРЖДЕНИИ КРАСКИ И СВОЙСТВОМ НЕСТАРЕНИЯ ПРИ НОРМАЛЬНОЙ ТЕМПЕРАТУРЕ И СПОСОБ ЕГО ПРОИЗВОДСТВА 2005
  • Наоки
  • Маруяма Наоки
  • Такахаси Манабу
  • Сугиура Нацуко
RU2389803C2
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНЫХ ПОЛОС ИЗ СВЕРХНИЗКОУГЛЕРОДИСТОЙ СТАЛИ 2002
  • Урцев В.Н.
  • Хабибулин Д.М.
  • Капцан А.В.
  • Платов С.И.
  • Воронков С.Н.
RU2212457C1
СПОСОБ ПРОИЗВОДСТВА ЧЕРНОЙ ЖЕСТИ 1999
  • Мишин М.П.
  • Сарычев А.Ф.
  • Корнилов В.Л.
  • Кушнарев А.В.
  • Карпов А.А.
  • Залетова Е.Д.
  • Коротких В.Ф.
  • Черкасский Р.И.
RU2165465C1
Способ определения водонасыщенности горных пород 1988
  • Губанов Юрий Семенович
  • Нестеренко Николай Юрьевич
  • Багнюк Михаил Никитович
SU1571229A1
ЕР 1905848 А2, 02.04.2008
US 6695932 B2, 24.02.2004
Кольцевая пружина 1983
  • Михайлов Анатолий Иванович
  • Панфилов Игорь Константинович
SU1193322A1
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1

RU 2 478 729 C2

Авторы

Мишнев Петр Александрович

Щелкунов Игорь Николаевич

Долгих Ольга Вениаминовна

Сушкова Светлана Андреевна

Струнина Людмила Михайловна

Даты

2013-04-10Публикация

2011-05-20Подача