СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕОЦИНКОВАННОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ Российский патент 2009 года по МПК C21D8/04 C21D9/48 C22C38/06 C23C2/04 

Описание патента на изобретение RU2361936C1

Изобретение относится к области металлургии, конкретно к технологии производства горячеоцинкованного проката повышенной прочности из низколегированной стали с фосфором, предназначенного для изготовления деталей автомобиля методом штамповки.

Одним из определяющих качеств автолиста является его способность к вытяжке при штамповке деталей автомобиля. Холоднокатаные полосы с повышенной прочностью и высокой способностью к вытяжке в зависимости от класса прочности должны соответствовать определенному комплексу механических свойств, например, согласно требованию европейского стандарта EN 10292-04 (таблица 1):

Таблица 1 Класс прочности (Кпр)* Марка Предел текучести
σ0,2 (Rel), Н/мм2
Временное сопротивление σв (Rm), Н/мм2 Относительное удлинение δ80, %, не менее
220 HX220PD 220-280 340-400 32 260 HX260PD 260-320 380-440 28 300 HX300PD 300-360 400-480 26 Примечание: *Класс прочности заложен в наименование марки по EN 10292-04. Числовое значение соответствует минимальному пределу текучести.

Известен способ производства стали, содержащей не более 0,007% углерода и 0,006% азота, включающий нагрев слябов при температурах 1000-1160°С, горячую прокатку в полосы с температурой конца прокатки 620-720°С, смотку в рулоны при температурах 600-680°С, холодную прокатку с обжатиями не менее 70%, отжиг при температурах 650-900°С и дрессировку. Выдержку при отжиге холоднокатаной стали проводят в течение 5-18 минут при температурах 750-900°С в проходных печах, а выдержку в течение 11-34 часов при температурах 650-750°С в колпаковых печах [Патент РФ №2258749, МПК С21D 8/04, С21D 9/48, 20.08.2005 г.].

Недостаток известного способа состоит в том, что он не обеспечивает требуемого уровня механических свойств проката классов прочности от 220 до 300.

Известен способ производства горячеоцинкованного металла высших категорий вытяжки, включающий горячую прокатку с температурой смотки 500±30°С, холодную прокатку с суммарным обжатием не более 70%, отжиг в колпаковой печи в защитной атмосфере с одноступенчатым нагревом при температуре 680-710°С и термическую обработку металла в линии агрегата непрерывного горячего цинкования при температурах 490-510°С со скоростью нагрева 10,8-11,4°С/с на первой стадии, при температурах 520-560°С со скоростью нагрева 0,4-0,8°С/с на второй стадии и выдержкой при этих температурах 85 с, охлаждение, перестаривание и нанесение тончайшего цинкового покрытия [Патент РФ №2128719, МПК С21D 9/48, С21D 8/04, С23С 2/40, 10.04.1999 г.].

Недостаток известного способа состоит в том, что он не обеспечивает требуемого уровня механических свойств классов прочности от 220 до 300.

Наиболее близким по технической сущности к предлагаемому изобретению является способ производства холоднокатаной стали для глубокой вытяжки, включающий выплавку стали, содержащей компоненты в следующем соотношении, масс.%:

Углерод 0,002-0,008 Кремний 0,005-0,025 Марганец 0,050-0,20 Фосфор 0,005-0,025 Сера 0,003-0,012 Алюминий 0,02-0,07 Азот 0,002-0,007 Титан 0,02-0,05 Ниобий 0,001-0,080 Железо и неизбежные примеси Остальное

разливку, горячую прокатку, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг с нанесением цинкового покрытия и дрессировку.

Горячую прокатку заканчивают при температуре, определяемой из соотношения:

Ткп≥7300/(3,0-lg[Nb][C])-253,

где Ткп - температура конца прокатки, °С;

[Nb] и [С] - содержание ниобия и углерода в стали, %;

а рекристаллизационный отжиг осуществляют в проходной печи при температуре, назначаемой в зависимости от содержания ниобия в стали в соответствии с уравнением:

Tотж=(750+1850[Nb]±20,

где Тотж- температура термической обработки, °С,

[Nb] - содержание ниобия в стали, масс.% [Патент РФ №2255989, МПК С21D 8/04, С22С 38/04, 10.07.2005 г.] - прототип.

Недостатки известного способа состоят в том, что он не обеспечивает требуемого уровня механических свойств проката классов прочности от 220 до 300.

Техническим результатом изобретения является повышение прочностных характеристик стали при сохранении штампуемости, а также получение стали требуемого класса прочности.

Технический результат достигается тем, что в способе производства горячеоцинкованного проката повышенной прочности из низколегированной стали для холодной штамповки, включающем выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг с нанесением цинкового покрытия и дрессировку, согласно изобретению выплавляют сталь, содержащую 0,025-0,10% углерода, 0,41-0,70% марганца, 0,04-0,12% фосфора, 0,01-0,08% алюминия, не более 0,009% азота, железо и неизбежные примеси - остальное, при этом температуру горячей прокатки поддерживают в диапазоне 840-905°С, а температуру смотки - 560-690°С, рекристаллизационный отжиг осуществляют при температуре 750-880°С, а дрессировку полос производят с обжатием 0,8-2,1%.

Согласно изобретению содержание углерода, фосфора и температура отжига связаны с требуемым классом прочности зависимостями:

где [С] - содержание углерода в стали, %;

[Р] - содержание фосфора в стали, %;

Тотж - температура рекристаллизационного отжига, °С;

Кпр - безразмерный показатель, численно равный требуемому минимальному пределу текучести;

0,0005; 0,065; 0,05 - эмпирические коэффициенты, %;

900; 0,5 - эмпирические коэффициенты, (С.

Сущность изобретения состоит в следующем. На механические свойства холоднокатаной листовой стали влияют как химический состав стали, так и режимы деформационно-термической обработки.

Углерод - один из упрочняющих элементов. При содержании углерода менее 0,025% прочностные свойства стали ниже допустимого уровня. Увеличение содержания углерода более 0,10% приводит к снижению пластичности стали, что недопустимо.

Марганец обеспечивает получение заданных механических свойств. При содержании марганца менее 0,41% прочность стали ниже допустимой. Увеличение содержания марганца более 0,70% чрезмерно упрочняет сталь, ухудшает ее пластичность.

Упрочнение стали создает фосфор, который повышает твердость феррита и усиливает выделение дисперсных карбидных включений. Одновременно фосфор улучшает пластичность и штампуемость стали. При содержании фосфора менее 0,04% прочность стали ниже допустимой. Увеличение содержания фосфора более 0,12% чрезмерно упрочняет сталь, ухудшает ее пластичность.

Алюминий введен в сталь как раскислитель. При содержании алюминия менее 0,01% снижается пластичность стали, при этом сталь становится склонной к старению. Увеличение содержания алюминия более 0,08% приводит к ухудшению комплекса механических свойств.

Азот упрочняет сталь. При содержании азота более 0,009%, сталь становится склонной к старению.

Горячая прокатка с температурами конца прокатки 840-905°С и смотки 560-690°С обеспечивает формирование оптимальной текстуры металла, которая после холодной прокатки и термообработки по предложенным режимам трансформируется в текстуру с преобладающей кристаллографической ориентировкой <111>, а также микроструктуры с высокой стабильностью и равномерностью. Ниже и выше заявленных температурных пределов технический результат не достигался, а именно сталь приобретала структуру с неблагоприятной для холодной штамповки текстурой и неравномерную микроструктуру ферритной матрицы.

В результате рекристаллизационного отжига при температуре 750-880°С формируется однородная микроструктура с баллом зерна 9-10 и минимальным выделением структурно-свободного цементита. Снижение температуры отжига ниже 750°С в проходных печах приводит к появлению в микроструктуре отдельных прерывистых строчек рекристаллизованных зерен, что ухудшает штампуемость листовой стали. Увеличение температуры отжига выше 880°С не обеспечивает необходимый уровень механических свойств.

Окончательно механические свойства формируются при дрессировке. Дрессировка полос с обжатием 0,8-2,1% обеспечивает оптимальный уровень механических свойств. Обжатие менее 0,8% приводит к появлению площадки текучести на диаграмме растяжения при испытании на разрыв. Дрессировка с обжатием более 2,1% ограничена техническими возможностями дрессировочного стана.

Экспериментально установлено, что для получения требуемого класса прочности содержание углерода и фосфора должно быть регламентировано в соответствии с зависимостями [С]=(0,0005·Кпр-0,065)±0,02,%, и [Р]=(0,0005·Кпр-0,05)±0,02,%, а температура отжига - в соответствии с выражением Тотж≥(900-0,5 Кпр), °С.

Примеры реализации способа

В кислородном конвертере выплавили низколегированные стали, химический состав которых приведен в таблице 2.

Выплавленную сталь разливали на машине непрерывного литья в слябы сечением 250×1280 мм. Слябы нагревали в нагревательной печи с шагающими балками до температуры 1250°С в течение 3,2 часа и прокатывали на непрерывном широкополосном стане 2000 в полосы толщиной 2,5-3,5 мм. Температура полос на выходе из последней клети стана регламентирована. Горячекатаные полосы на отводящем рольганге охлаждали водой до определенных температур и сматывали в рулоны. Охлажденные рулоны подвергали солянокислотному травлению в непрерывном травильном агрегате. Затем травленые полосы прокатывали на 5-клетевом стане до толщины 1,0-2,0 мм. Холоднокатаные полосы отжигали в проходных печах с нанесением цинкового покрытия. Отожженные полосы дрессировали с заданным обжатием.

В таблице 3 приведены варианты реализации способа производства горячекатаного проката, а также показатели механических свойств.

В таблицах 4-6 указано необходимое содержание углерода, фосфора и температура отжига согласно зависимостям (1)-(3).

Таблица 2
Химический состав низколегированных сталей
№ состава Содержание элементов, масс.% С Mn Р Аl N Fe и неизбежные примеси 1 0,02 0,35 0,015 0,05 0,006 Ост. 2 0,25 0,41 0,040 0,01 0,005 Ост. 3 0,06 0,55 0,068 0,04 0,006 Ост. 4 0,10 0,70 0,120 0,08 0,009 Ост. 5 0,11 0,80 0,125 0,09 0,006 Ост. 6 (прототип) 0,008 0,18 0,018 0,04 0,005 Ост. Примечание: состав №6 содержит 0,02% титана и 0,08% ниобия

Таблица 3
Технологические параметры производства горячеоцинкованного проката повышенной прочности и показатели механических свойств
№ состава Температура конца горячей прокатки Ткп, °С Температура смотки при горячей прокатке Тсм, °С Температура отжига, °С Степень обжатия при дрессировке, % Предел текучести σт, Н/мм2 Предел прочности σв, Н/мм2 Относительное удлинение δ80, % 1 910 680 890 0,7 210 330 37 2 905 690 880 0,8 240 360 33 3 865 640 850 1,5 285 405 30 4 840 560 750 2,1 340 445 28 5 830 520 745 2,1 365 490 22 6(прототип) 880-920 700 750-880 0,8 - - -

Таблица 4
Минимальное и максимальное содержание углерода, рассчитанное согласно зависимости [С]=(0,0005·Кпр-0,065)±0,02, %
№ состава Содержание С, масс.% Требуемый класс прочности Кпр Содержание С, масс.% согласно зависимости [С]=(0,0005·Кпр-0,065)±0,02,% Cmin Cmах 1 0,02 220 0,025 0,065 2 0,25 220 0,025 0,065 3 0,06 260 0,045 0,085 4 0,10 300 0,065 0,105 5 0,11 300 0,065 0,105 6(прототип) 0,008 220 0,025 0,065

Таблица 5
Минимальное и максимальное содержание фосфора, рассчитанное согласно зависимости [Р]=(0,0005·Кпр-0,05)±0,02, %
№ состава Содержание Р, масс.% Требуемый класс прочности Кпр Содержание Р, масс.% согласно зависимости [Р]=(0,0005·Кпр-0,05)±0,02, % Pmin Рmах 1 0,015 220 0,04 0,08 2 0,040 220 0,04 0,08 3 0,068 260 0,06 0,10 4 0,120 300 0,08 0,12 5 0,125 300 0,08 0,12 6 (прототип) 0,018 220 0,04 0,08

Таблица 6
Температура рекристаллизационного отжига Тотж, рассчитанная согласно зависимости Тотж.≥(900-0,5•Кпр), °С
№ состава Температура рекристаллизационного отжига, °С Требуемый класс прочности
Кпр
Температура отжига Тотж согласно зависимости Тотж(900-0, 5·Кпр), °С
не менее 1 890 220 790 2 880 220 790 3 850 260 770 4 750 300 750 5 745 300 750 6 (прототип) 750-880 220 790

Из таблиц 2-6 видно, что в случае реализации предложенного способа (составы №2-4) и выполнении зависимостей (1)-(3) достигаются механические свойства с классами прочности от 220 до 300. При запредельных значениях заявленных параметров (составы №1 и 5) и использовании способа-прототипа классы прочности от 220 до 300 не достигаются: для состава №1 классу прочности 220 не соответствует предел текучести и предел прочности; для состава №5 классу прочности 300 не соответствует предел текучести и относительное удлинение.

Из проката изготавливали штамповкой высоконагруженные детали автомобиля, такие как усилители корпуса и несущие детали рамы автомобиля; замечаний к штамповке у потребителя не было.

Похожие патенты RU2361936C1

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕОЦИНКОВАННОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ 2008
  • Кузнецов Виктор Валентинович
  • Струнина Людмила Михайловна
  • Шишина Антонина Кирилловна
  • Ордин Владимир Георгиевич
  • Артюшечкин Александр Викторович
  • Иванов Дмитрий Викторович
  • Кузнецов Анатолий Александрович
  • Никитин Дмитрий Иванович
RU2361935C1
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ 2008
  • Немтинов Александр Анатольевич
  • Кузнецов Виктор Валентинович
  • Струнина Людмила Михайловна
  • Золотова Лариса Юрьевна
  • Долгих Ольга Вениаминовна
  • Ордин Владимир Георгиевич
  • Ефимов Семен Викторович
  • Головко Владимир Андреевич
RU2361934C1
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕОЦИНКОВАННОЙ ПОЛОСЫ (ВАРИАНТЫ) 2010
  • Кузнецов Виктор Валентинович
  • Щелкунов Игорь Николаевич
  • Долгих Ольга Вениаминовна
  • Никитин Дмитрий Иванович
  • Серов Сергей Владимирович
  • Сушкова Светлана Андреевна
  • Струнина Людмила Михайловна
RU2445380C1
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ 2007
  • Немтинов Александр Анатольевич
  • Кузнецов Виктор Валентинович
  • Струнина Людмила Михайловна
  • Золотова Лариса Юрьевна
  • Долгих Ольга Вениаминовна
  • Лятин Андрей Борисович
  • Головко Владимир Андреевич
  • Родионова Ирина Гавриловна
RU2358025C1
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОГО ВЫСОКОПРОЧНОГО ЛИСТОВОГО ПРОКАТА ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2019
  • Родионова Ирина Гавриловна
  • Павлов Александр Александрович
  • Карамышева Наталия Анатольевна
  • Бакланова Ольга Николаевна
  • Мельниченко Александр Семенович
  • Углов Владимир Александрович
  • Денисов Сергей Владимирович
  • Шпак Анастасия Игоревна
  • Лукьянчиков Дмитрий Юрьевич
  • Телегин Вячеслав Евгеньевич
  • Папшев Андрей Викторович
  • Гребенщиков Дмитрий Александрович
  • Жовнер Станислав Артурович
RU2723872C1
СПОСОБ ПРОИЗВОДСТВА ХОДОДНОКАТАННОГО ВЫСОКОПРОЧНОГО ЛИСТОВОГО ПРОКАТА ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2019
  • Родионова Ирина Гавриловна
  • Павлов Александр Александрович
  • Бакланова Ольга Николаевна
  • Карамышева Наталия Анатольевна
  • Чиркина Ирина Николаевна
  • Дьяконов Дмитрий Львович
  • Денисов Сергей Владимирович
  • Телегин Вячеслав Евгеньевич
  • Лукьянчиков Дмитрий Юрьевич
  • Андреев Сергей Геннадьевич
  • Мастяев Антон Вячеславович
RU2747103C1
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕОЦИНКОВАННОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ 2014
  • Мишнев Петр Александрович
  • Адигамов Руслан Рафкатович
  • Никитин Дмитрий Иванович
  • Щелкунов Игорь Николаевич
RU2570144C1
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ СТАЛИ ДЛЯ ГЛУБОКОЙ ВЫТЯЖКИ 2006
  • Куницын Глеб Александрович
  • Злов Владимир Евгеньевич
  • Папшев Андрей Викторович
  • Родионова Ирина Гавриловна
  • Фомин Евгений Савватьевич
  • Бурко Дмитрий Александрович
RU2330887C1
СПОСОБ ПРОИЗВОДСТВА СТАЛЬНОЙ ПОЛОСЫ (ВАРИАНТЫ) 2011
  • Мишнев Петр Александрович
  • Щелкунов Игорь Николаевич
  • Долгих Ольга Вениаминовна
  • Сушкова Светлана Андреевна
  • Струнина Людмила Михайловна
RU2478729C2
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕОЦИНКОВАННОГО ПРОКАТА ДЛЯ ХОЛОДНОЙ ШТАМПОВКИ 2017
  • Мишнев Петр Александрович
  • Адигамов Руслан Рафкатович
  • Никитин Дмитрий Иванович
  • Антковьяк Александр Александрович
RU2645622C1

Реферат патента 2009 года СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕОЦИНКОВАННОГО ПРОКАТА ПОВЫШЕННОЙ ПРОЧНОСТИ

Изобретение относится к области металлургии, конкретно к технологии производства горячеоцинкованного проката из низколегированной стали, предназначенного для изготовления деталей автомобиля методом штамповки. Техническим результатом изобретения является повышение прочностных характеристик стали при сохранении штампуемости, а также получение стали требуемого класса прочности. Технический результат достигается тем, что осуществляют выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг с нанесением цинкового покрытия и дрессировку, при этом выплавляют сталь, содержащую, мас.%: 0,025-0,10 углерода, 0,41-0,70 марганца, 0,04-0,12 фосфора, 0,01-0,08 алюминия, не более 0,009 азота, железо и неизбежные примеси - остальное, температуру горячей прокатки поддерживают в диапазоне 840-905°С, температуру смотки - 560-690°С, рекристаллизационный отжиг ведут при 750-880°С, а дрессировку полос производят с обжатием 0,8-2,1%. Содержание углерода, фосфора и температура отжига связаны с требуемым классом прочности зависимостями: [С]=(0,0005·Кпр-0,065)±0,02; [Р]=(0,0005·Кпр-0,05)±0,02; Tотж≥(900-0,5-Кпр), где: [С] - содержание углерода в стали, мас.%, [Р] - содержание фосфора в стали, мас.%, Tотж - температура рекристаллизационного отжига, °С, Кпр - безразмерный показатель, численно равный требуемому минимальному пределу текучести; 0,0005; 0,065; 0,05 - эмпирические коэффициенты, %; 900; 0,5 - эмпирические коэффициенты, °С. 3 з.п. ф-лы; 6 табл.

Формула изобретения RU 2 361 936 C1

1. Способ производства горячеоцинкованного проката повышенной прочности из низколегированной стали для холодной штамповки, включающий выплавку стали, разливку, горячую прокатку, охлаждение водой, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг с нанесением цинкового покрытия и дрессировку, отличающийся тем, что выплавляют сталь, содержащую следующие компоненты, мас.%:
углерод 0,025-0,10 марганец 0,41-0,70 фосфор 0,04-0,12 алюминий 0,01-0,08 азот не более 0,009 железо и неизбежные примеси остальное


при этом температуру горячей прокатки поддерживают в диапазоне 840-905°С, а температуру смотки - 560-690°С, рекристаллизационный отжиг осуществляют при температуре 750-880°С, а дрессировку полос производят с обжатием 0,8-2,1%.

2. Способ по п.1, отличающийся тем, что содержание углерода в стали связано с требуемым классом прочности зависимостью:
[С]=(0,0005·Кпр-0,065)±0,02,
где [С] - содержание углерода в стали, мас.%;
0,0005 - эмпирический коэффициент, %;
Кпр - безразмерный показатель, численно равный требуемому минимальному пределу текучести;
0,065 - эмпирический коэффициент, %.

3. Способ по п.1, отличающийся тем, что содержание фосфора в стали связано с требуемым классом прочности зависимостью:
[P]=(0,0005·Кпр-0,05)±0,02,
где [Р] - содержание фосфора в стали, мас.%;
0,0005 - эмпирический коэффициент, %;
Кпр - безразмерный показатель, численно равный требуемому минимальному пределу текучести;
0,05 - эмпирический коэффициент, %.

4. Способ по п.1, отличающийся тем, что рекристаллизационный отжиг проводят при температуре, определяемой по зависимости:
Тотж≥(900-0,5·Кпр),
где Тотж - температура рекристаллизационного отжига, °С;
900 - эмпирический коэффициент, °С;
Kпр - безразмерный показатель, численно равный требуемому минимальному пределу текучести;
0,5 - эмпирическией коэффициент, °С.

Документы, цитированные в отчете о поиске Патент 2009 года RU2361936C1

СПОСОБ ПРОИЗВОДСТВА СТАЛИ 2004
  • Заверюха А.А.
  • Разомазов К.А.
  • Иевлев В.М.
RU2258749C1
Способ изготовления холоднокатаного оцинкованного листа 1982
  • Пертти Юхани Сиппола
SU1311622A3
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ СТАЛИ ДЛЯ ГЛУБОКОЙ ВЫТЯЖКИ 2004
  • Тахаутдинов Р.С.
  • Бодяев Ю.А.
  • Сарычев А.Ф.
  • Карпов А.А.
  • Антипенко А.И.
  • Николаев О.А.
  • Злов В.Е.
  • Денисов С.В.
  • Родионова И.Г.
  • Фомин Е.С.
  • Зинько Б.Ф.
RU2255989C1
СПОСОБ ПРОИЗВОДСТВА ХОЛОДНОКАТАНОЙ СТАЛИ ДЛЯ ХОЛОДНОЙ ШТАМПОВКИ 2006
  • Немтинов Александр Анатольевич
  • Кузнецов Виктор Валентинович
  • Струнина Людмила Михайловна
  • Степаненко Владислав Владимирович
  • Ефимов Семен Викторович
  • Кузнецов Максим Анатольевич
  • Родионова Ирина Гавриловна
  • Ефимова Татьяна Михайловна
  • Бурко Дмитрий Александрович
  • Пименов Виктор Александрович
RU2313583C2
Устройство для сортировки каменного угля 1921
  • Фоняков А.П.
SU61A1

RU 2 361 936 C1

Авторы

Кузнецов Виктор Валентинович

Струнина Людмила Михайловна

Шишина Антонина Кирилловна

Лятин Андрей Борисович

Артюшечкин Александр Викторович

Иванов Дмитрий Викторович

Кузнецов Анатолий Александрович

Никитин Дмитрий Иванович

Даты

2009-07-20Публикация

2008-01-09Подача