Изобретение относится к области металлургии благородных металлов, в частности к технологии селективного извлечения благородных металлов из растворов, содержащих цветные металлы. Растворы сложного состава, содержащие цветные и благородные металлы, получают, например, при гидрометаллургической переработке анодных шламов, образующихся в процессе электролитического рафинирования меди и никеля, а также при переработке шлиховой платины и вторичного сырья драгоценных металлов. Платиновые металлы и золото требуется селективно от цветных металлов извлекать из растворов в концентраты, пригодные для аффинажа.
Известен способ селективного извлечения благородных металлов из растворов путем осаждения малорастворимых комплексных солей аммония. Так, платину осаждают из растворов аффинажного производства в виде хлороплатината аммония (Масленицкий И.Н., Чугаев Л.В., Борбат В.Ф. Металлургия благородных металлов. М., Металлургия, 1987, с.410), палладий извлекают в виде хлорпалладозоамина (там же, с.415). Недостатком способа является неполное извлечение благородных металлов из растворов, обусловленное растворимостью солей. Поэтому данный процесс используется главным образом в аффинажном производстве, а для переработки растворов сложного состава недостаточно эффективен.
Ближайшим аналогом является способ извлечения благородных металлов из растворов после хлорирования анодных шламов, включающий экстракцию благородных металлов раствором первичных аминов в керосине и последующее извлечение благородных металлов из органического раствора (Котляр Ю.А., Меретуков М.А. Металлургия благородных металлов. М., АСМИ, 2002, стр.367-368). Недостатками этого способа являются высокая пожароопасность, большая энергоемкость и низкая производительность процесса. Использование керосина создает необходимость выполнения жестких требований норм и правил безопасности при работе с легковоспламеняющимися жидкостями; требуются дополнительные расходы на оснащение производства дорогостоящими системами пожаробезопасности. Используется сложная и энергоемкая схема реэкстракции.
С целью исключения указанных недостатков и интенсификации процесса предлагается способ простого и легко реализуемого в промышленных условиях количественного извлечения благородных металлов из растворов, содержащих цветные металлы, растворимым в воде органическим соединением, которое образует нерастворимые комплексы с благородными металлами.
Сущность изобретения заключается в том, что в раствор, содержащий благородные металлы (платина, палладий, золото и др.) и цветные металлы (никель, медь), вводят водный раствор четвертичной аммонийной соли - клатрата дидецилдиметиламмоний бромида (ДДДМАБ) с карбамидом, образующего с благородными металлами устойчивые, нерастворимые в воде органические комплексы. Процесс ведут при интенсивном перемешивании и температуре не более 70°С, в течение 30-90 мин. Для специалиста в данной области техники будет очевидно, что производственный процесс следует вести предпочтительно в интервале температур 25±20°С, поскольку точка замерзания раствора около 0°С, при температуре около 70°С происходит разложение клатрата ДДДМАБ с карбамидом. Оптимальными условиями процесса, обеспечивающими высокое извлечение драгоценных металлов в концентрат, являются: температура 25°С, продолжительность около 60 мин. После этого реакционную массу отстаивают, фильтруют и промывают осадок разбавленным раствором соляной кислоты.
Благородные металлы извлекаются из раствора практически полностью, цветные металлы (медь, никель, кобальт) и железо остаются в маточном растворе. Расход реагента зависит от состава исходного раствора. Теоретический расход клатрата ДДЦМАБ с карбамидом (молекулярная масса 1366) составляет 6,9 г на 1 г золота, 14,0 г на 1 г платины, 25,7 г на 1 г палладия. Для количественного извлечения благородных металлов требуется избыток реагента.
Осадок органических комплексных солей благородных металлов обрабатывают восстановителем, например гидразингидратом, в присутствии пеногасителя, получая коллективный концентрат драгоценных металлов, пригодный для аффинажа. При восстановлении регенерируется комплексообразователь - клатрат дидецилдиметиламмоний бромида с карбамидом.
Растворы, полученные в результате восстановления органического комплекса, могут быть использованы в обороте для извлечения драгоценных металлов из следующей порции раствора.
Отличительные признаки изобретения иллюстрируются примерами.
Пример 1.
Анодный шлам электролитического рафинирования меди подвергли окислительному обжигу для удаления серы, селена и теллура. Затем провели гидрохлорирование обожженного продукта. Цветные металлы, золото и платиновые металлы перешли в раствор. Раствор фильтрацией отделили от твердого остатка, содержащего, главным образом, хлорид серебра, и направили на извлечение благородных металлов по заявляемому способу.
Процесс вели следующим образом. В эмалированный реактор, снабженный мешалкой, загрузили 100 л раствора гидрохлорирования. При температуре 25°С и интенсивном перемешивании в реактор залили 75 л 20%-ного раствора клатрата ДДДМАБ с карбамидом. При этом образовался объемистый осадок органических комплексных солей благородных металлов. Реакционную массу выдерживали при перемешивании и температуре 25°С в течение 60 мин, после чего выключили мешалку и провели отстаивание в течение 3 ч. После отстаивания реакционную массу направили на фильтрацию. Осадок промыли на фильтре 3%-ным раствором соляной кислоты с целью удаления примесей цветных металлов.
Полученный осадок органических комплексных солей смешали с 20 л воды и обработали гидразингидратом. Обработку вели при температуре 20°С в течение 1 ч, с последующим нагреванием реакционной массы до 80°С и перемешиванием в течение 1 ч. Во избежание интенсивного вспенивания, восстановление проводили в присутствии пеногасителя (водная эмульсия кремнийорганических полимеров). В результате был получен концентрат благородных металлов. Концентрат отделили от раствора на фильтре, промыли водой и высушили.
Результаты эксперимента приведены в таблице 1. Цветные металлы и железо в осадок почти не переходят, что позволяет получать богатый коллективный концентрат благородных металлов, пригодный для аффинажа. Извлечение в концентрат составило: золота 99,93%, платины 99,93%, палладия 99,95%.
Пример 2.
Провели переработку анодного шлама с получением раствора гидрохлорирования, как в примере 1.
Извлечение благородных металлов из раствора гидрохлорирования вели в две стадии. Вначале провели осаждение хлороплатината и хлоропалладата аммония, а затем из маточного раствора осадили органические комплексные соли клатратом ДДДМАБ с карбамидом.
Процесс вели следующим образом. Раствор гидрохлорирования в количестве 100 л обработали 20 л 25%-ного раствора хлорида аммония (5 кг NH4Cl в пересчете на сухое вещество) при комнатной температуре и перемешивании в течение 30 мин. В процессе осаждения через реакционную массу пропускали газообразный хлор с целью перевода палладия в четырехвалентное состояние. Выпавшие соли (смесь хлороплатината аммония и хлоропалладата аммония) отфильтровали и промыли на фильтре 5 л 5%-ого раствора хлорида аммония. В маточном растворе остались золото, цветные металлы, небольшое количество платины и палладия. Результаты осаждения хлороплатината и хлоропалладата аммония приведены в таблице 2.
Маточный раствор после осаждения аммонийных солей (фильтрат и промводы) загрузили в реактор и провели осаждение клатратом ДДДМАБ с карбамидом. Количество клатрата при этом было в 10 раз меньше, чем в примере 1, и составляло 7,5 л 20% раствора (1,5 кг комплексообразователя в пересчете на сухое вещество). Остальные условия осаждения и последующей переработки осадка такие же, как в примере 1. Результаты опыта приведены в таблице 3.
Сквозное извлечение драгоценных металлов из раствора (суммарно в соли и концентрат) составило: золота 99,97%, платины 99,95%, палладия 99,96%.
Пример 3.
Извлечение драгоценных металлов из раствора гидрохлорирования вели как в примере 1, но изменяли температуру и продолжительность осаждения в виде органических комплексных солей. В опыте №7 в качестве осадителя использовали оборотный раствор, полученный в результате восстановления благородных металлов из органического комплекса в опыте №1 (дополнительно ввели 7,5 л 20% раствора клатрата ДДДМАБ с карбамидом, т.е. 10% от первоначального количества реактива).
Результаты опытов приведены в таблице 4.
название | год | авторы | номер документа |
---|---|---|---|
Способ очистки платино-палладиевых хлоридных растворов от золота, селена, теллура и примесей неблагородных металлов | 2021 |
|
RU2787321C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ И РАЗДЕЛЕНИЯ МЕТАЛЛОВ ПЛАТИНОВОЙ ГРУППЫ | 2002 |
|
RU2200132C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ПЛАТИНОВЫХ МЕТАЛЛОВ ИЗ СОДЕРЖАЩЕГО ИХ МАТЕРИАЛА | 1997 |
|
RU2120485C1 |
Способ комплексной экстракции металлов 1 и 8 группы | 2018 |
|
RU2692341C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ И ОЧИСТКИ МЕТАЛЛОВ ПЛАТИНОВОЙ ГРУППЫ И ЗОЛОТА | 1997 |
|
RU2108294C1 |
Способ селективного выделения обогащенных концентратов платиновых металлов из многокомпонентных растворов | 2021 |
|
RU2764778C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ И РАЗДЕЛЕНИЯ МЕТАЛЛОВ ПЛАТИНОВОЙ ГРУППЫ | 2000 |
|
RU2161130C1 |
Способ выделения благородных металлов из продуктов переработки руд | 2016 |
|
RU2632740C1 |
СПОСОБ ПЕРЕРАБОТКИ МАТЕРИАЛОВ, СОДЕРЖАЩИХ БЛАГОРОДНЫЕ МЕТАЛЛЫ И ЖЕЛЕЗО | 2020 |
|
RU2750735C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ИРИДИЯ ИЗ МАТЕРИАЛА, СОДЕРЖАЩЕГО МЕТАЛЛЫ ПЛАТИНОВОЙ ГРУППЫ | 1993 |
|
RU2062804C1 |
Изобретение относится к области металлургии благородных металлов, в частности к технологии селективного извлечения благородных металлов из растворов, содержащих цветные металлы. Благородные металлы экстрагируют водным раствором клатрата дидецилдиметиламмоний бромида с карбамидом с осаждением и получением осадка, который отделяют фильтрацией. Осаждение в виде органических комплексных солей благородных металлов ведут при перемешивании. Полученную реакционную массу отстаивают, фильтруют и промывают осадок разбавленным раствором соляной кислоты. Из осадка органических комплексных солей благородные металлы восстанавливают гидразингидратом в присутствии пеногасителя. Раствор, полученный в результате восстановления благородных металлов из органического комплекса, используют для выделения благородных металлов в следующем цикле обработки растворов, содержащих цветные металлы. Техническим результатом является повышение энергоемкости и производительности процесса. 1 з.п. ф-лы, 4 табл.
1. Способ извлечения благородных металлов из растворов, содержащих цветные металлы, включающий осаждение благородных металлов в виде органических комплексных солей из раствора при перемешивании с последующим отстаиванием, фильтрацией и промывкой осадка, отличающийся тем, что осаждение ведут водным раствором клатрата дидецилдиметиламмонийбромида с карбамидом и осадок восстанавливают с получением концентрата благородных металлов.
2. Способ по п.1, отличающийся тем, что восстановление благородных металлов из осадка органических комплексных солей осуществляют гидразингидратом в присутствии пеногасителя.
СПОСОБ ОСАЖДЕНИЯ ПЛАТИНОИДОВ ИЗ ВОДНЫХ РАСТВОРОВ ПРИ ПЕРЕРАБОТКЕ ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА | 1998 |
|
RU2147619C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ПЛАТИНОВЫХ МЕТАЛЛОВ ИЗ СУЛЬФАТНЫХ РАСТВОРОВ | 1993 |
|
RU2065501C1 |
СПОСОБ ОЧИСТКИ И РАЗДЕЛЕНИЯ ПЛАТИНЫ И ПАЛЛАДИЯ | 1996 |
|
RU2110591C1 |
СПОСОБ РЕГЕНЕРАЦИИ НИКЕЛЬ-ХРОМОВОГО КАТАЛИЗАТОРА | 0 |
|
SU237828A1 |
JP 61183420 A, 16.08.1986 | |||
US 4319923 A, 16.03.1982 | |||
Самонастраивающаяся машина для стыковой контактной сварки непрерывным оплавлением | 1966 |
|
SU238033A1 |
Авторы
Даты
2009-07-27—Публикация
2008-01-14—Подача