Изобретение относится к области получения химически модифицированных глин, которые могут быть использованы в качестве сорбентов для очистки и обеззараживания воды в различных отраслях промышленности.
Бентонит, относящийся к слоистым глинистым минералам группы смектитов, широко применяется при изготовлении материалов для различных отраслей промышленности: нефтедобычи, металлургии, очистки воды. Возможности бентонита, как исходного сырья для получения новых материалов многоцелевого назначения, далеко не исчерпаны. Высокое содержание в бентоните монтмориллонита, структурными элементами которого являются алюмосиликатные слои толщиной 1 нм, обеспечивает весьма значительный научно-технологический потенциал этого минерала. В настоящее время, в связи с утратой богатых монтмориллонитом месторождений Закавказья, актуальным является вовлечение в промышленное использование российских бентонитов и создание физико-химических основ получения и применения полимерсиликатных композиций с необходимым комплексом технологических свойств.
Наиболее близким к предлагаемому изобретению является способ получения органоминерального катионита [Е.Е.Ергожин, A.M.Акимбаева, А.Д.Товасаров. Пластические массы, №10, 2005].
Способ его получения заключается в том, что бентонит Монракского месторождения (Казахстан), основным породообразующим минералом которого является монтмориллонит, активируют 20% серной кислотой при нагревании в течение 6 часов на водяной бане. Затем бентонит обрабатывают раствором перекиси бензоила в качестве инициатора и высушивают в вакууме до постоянного веса. Высушенный бентонит помещают в реакционную колбу, добавляют водный раствор акриловой кислоты и продувают инертным газом. Реакционную систему при перемешивании нагревают при температуре 60-70°С. При этом получается активированный полиакриловой кислотой бентонит, который проявляет свойства слабокислотного катионита.
Недостатком данного способа получения активированного бентонита является то, что обработка глинистых минералов неорганическими кислотами приводит к глубокому изменению их структуры и свойств. Эти изменения, прежде всего, выражаются в значительном разрушении октаэдрических слоев в результате растворения оксидов алюминия, магния и железа. При этом Н-форма бентонита переходит в Al-форму, особенно при нагревании и увлажнении, что сопровождается значительной потерей активности. Кроме того, данный способ отличается многостадийностью и длительностью процесса.
Задача, решаемая изобретением, - использование бентонитовой глины российского месторождения, упрощение процесса активации поверхности бентонита, повышение сорбционной активности, улучшение эксплуатационных качеств бентонитовой глины, придание композиции биоцидных свойств.
Заявляемый способ заключается в том, что для получения химически активированной поверхности бентонитовой глины, глинистый минерал российского месторождения «Герпегеж» (Кабардино-Балкарская республика), содержащий 80% монтмориллонита подвергают активированию гуанидинсодержащими солями, что приводит к гидрофобизации частиц глины и лучшему совмещению с органическими материалами. В качестве активатора используют биоцидную гуанидинсодержащую соль с четвертичным атомом азота, например: диаллилгуанидинацетат (ДАГА), диаллилгуанидинтрифторацетат (ДАГТФА), метакрилатгуанидин (МАГ), акрилатгуанидин (АГ).
Для получения полимерно-глинистой композиции к водной суспензии бентонитовой глины добавляют активатор поверхности гуанидинсодержащую соль с четвертичным атомом азота, обрабатывают активированную поверхность непредельной органической кислотой, акриловой (АК) или метакриловой (МАК) кислотой, в присутствии радикального инициатора полимеризации персульфата аммония, при этом активированную бентонитовую глину и непредельную органическую кислоту берут в массовом соотношении 1:1÷2, далее нагревают при температуре 60-70°С при перемешивании до полимеризации непредельной органической кислоты.
Способ осуществляется следующим образом:
Пример 1. В суспензию бентонита, содержащую 10 г глины и 50 мл воды, приготовленную перемешиванием при комнатной температуре на магнитной мешалке в течение 30 минут, добавляют диаллилгуанидинацетат и перемешивают еще 2 часа при комнатной температуре. Соотношение гуанидинового соединения и бентонитовой глины 15:85 мас.%. Полученную органоглину промывают водой многократной декантацией и высушивают при комнатной температуре. Затем 40 мл водной суспензии, содержащей 5 г органоглины, помещают в четырехгорлую колбу объемом 0,5 л, снабженную мешалкой, обратным холодильником, термометром, приливают 5 мл метакриловой или акриловой кислоты и персульфат аммония так, чтобы его концентрация в общем растворе объемом 50 мл составляла 5×10-3 М. Реакционную смесь перемешивают при 60-70°С до полимеризации непредельной органической кислоты. Полученный продукт извлекают из колбы, многократно промывают дистиллированной водой и сушат при комнатной температуре 48 часов.
Пример 2. В суспензию бентонита, содержащую 10 г глины и 50 мл воды, приготовленную перемешиванием при комнатной температуре на магнитной мешалке в течение 30 минут, добавляют диаллилгуанидинтрифторацетат и перемешивают еще 2 часа при комнатной температуре. Соотношение гуанидинового соединения и бентонитовой глины 15:85 мас.%. Полученную органоглину промывают водой многократной декантацией и высушивают при комнатной температуре. Затем 40 мл водной суспензии, содержащей 5 г органоглины, помещают в четырехгорлую колбу объемом 0,5 л, снабженную мешалкой, обратным холодильником, термометром, приливают 8 мл метакриловой или акриловой кислоты и персульфат аммония так, чтобы его концентрация в общем растворе объемом 50 мл составляла 5×10-3 M. Реакционную смесь перемешивают при 60-70°С до полимеризации непредельной органической кислоты. Полученный продукт извлекают из колбы, многократно промывают дистиллированной водой и сушат при комнатной температуре 48 часов.
Пример 3. В суспензию бентонита, содержащую 10 г глины и 50 мл воды, приготовленную перемешиванием при комнатной температуре на магнитной мешалке в течение 30 минут, добавляют акрилатгуанидин или метакрилатгуанидин и перемешивают еще 2 часа при комнатной температуре. Соотношение гуанидинового соединения и бентонитовой глины 15:85 мас.%. Полученную органоглину промывают водой многократной декантацией и высушивают при комнатной температуре. Затем 40 мл водной суспензии, содержащей 5 г органоглины, помещают в четырехгорлую колбу объемом 0,5 л, снабженную мешалкой, обратным холодильником, термометром, приливают 10 мл метакриловой или акриловой кислоты и персульфат аммония так, чтобы его концентрация в общем растворе объемом 50 мл составляла 5×10-3 М. Реакционную смесь перемешивают при 60-70°С до полимеризации непредельной органической кислоты. Полученный продукт извлекают из колбы, многократно промывают дистиллированной водой и сушат при комнатной температуре 48 часов.
Технический результат достигается за счет применения для активации глины биоцидных гуанидинсодержащих солей с четвертичным атомом азота, повышения потребительских свойств за счет увеличения сорбционной активности и придания биоцидных свойств, упрощения процесса благодаря сокращению времени модификации глины.
Исследование сорбционной активности у полученных композиций осуществляли традиционными способами, которыми обычно пользуются для оценки активности сорбентов: по адсорбции метиленового синего и йода из водного раствора, в статических условиях. Равновесную концентрацию метиленового синего определяли фотоколориметрическим методом. Равновесную концентрацию йода определяли титрованием раствором тиосульфата натрия. Адсорбционную активность материала осуществляли через определение адсорбционной емкости в мг×г-1 (таблица 1).
Возможность извлечения синтезированными композиционными материалами некоторых тяжелых металлов из сточных и природных вод исследовали с использованием модельных растворов. Измерения массовой концентрации металлов в пробах воды до и после обработки композитами проводили атомно-адсорбционным методом с электротермической атомизацией с использованием атомно-адсорбционного спектрометра «МГА-915». Результаты исследований приведены в таблице 2.
Проверка эффективности очистки модельной сточной воды от токсичных органических соединений показала, что предлагаемый материал обладает высокой поглотительной способностью к токсичным органическим соединениям, в частности к фенолу. Равновесную концентрацию фенола определяли фотоколориметрическим методом. Были построены изотермы адсорбции фенола из его водных растворов при комнатной температуре. Данные исследования показывают, что поглощательная способность полученных сорбентов по отношению к фенолу увеличивается для композиционных материалов, которые были получены при обработке более высокой концентрацией акриловой или метакриловой кислоты. При содержании фенола менее 1 мг/л его извлечение из раствора составляет 80-95% (см. чертеж).
Исследования бактерицидной активности и токсичности синтезированных композиционных материалов, проведенные совместно с Бактериологической лабораторией ГСЭН КБР и фармацевтическим объединением «Эльфарми» (КБР, г.Нальчик), показали, что эти препараты весьма активны и обладают биоцидным действием по отношению к грамотрицательным (E.coli) микроорганизмам, а также обладают невысокой токсичностью (табл.3).
Таким образом, сочетание в полученных материалах высокой бактерицидной активности с повышенной способностью связываться с тяжелыми металлами и органическими поллютантами открывает возможности их использования в качестве эффективных сорбентов для очистки и обеззараживания воды.
Оценка адсорбционной емкости полимерных композитов
Измерения массовой концентрации металлов в пробах воды до и после обработки композитами
Данные по биоцидности и токсичности полимерно-глинистых композиций
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ГИБРИДНОГО ОРГАНО-НЕОРГАНИЧЕСКОГО СОРБЕНТА ДЛЯ ОЧИСТКИ РАЗЛИЧНЫХ ПОВЕРХНОСТЕЙ ОТ РАЗЛИВОВ НЕФТИ И НЕФТЕПРОДУКТОВ | 2009 |
|
RU2397809C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИИ ДЛЯ ОЧИСТКИ И ОБЕЗЗАРАЖИВАНИЯ ВОДЫ | 2006 |
|
RU2331470C2 |
СПОСОБ ОРГАНОМОДИФИКАЦИИ БЕНТОНИТОВ (ВАРИАНТЫ) | 2007 |
|
RU2369584C2 |
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД ОТ МНОГОКОМПОНЕНТНЫХ ЗАГРЯЗНЕНИЙ | 2017 |
|
RU2644880C1 |
СПОСОБ ПОЛУЧЕНИЯ ОРГАНОГЛИНЫ | 2008 |
|
RU2380316C1 |
Способ получения порошкообразного гидрофильного органобентонита | 2020 |
|
RU2754533C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНЫХ ОРГАНОМОДИФИЦИРОВАННЫХ ГЛИН, ИСПОЛЬЗУЕМЫХ В КАЧЕСТВЕ МАТРИЦЫ ИЛИ НАПОЛНИТЕЛЯ В НАНОКОМПОЗИТАХ | 2009 |
|
RU2417161C2 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТНОГО СОРБЕНТА ДЛЯ ЗАСУШЛИВЫХ ПОЧВ | 2016 |
|
RU2622430C1 |
СОСТАВ НАНОКОМПОЗИТНОГО СОРБЕНТА ДЛЯ ЗАСУШЛИВЫХ ПОЧВ | 2016 |
|
RU2623769C1 |
НУКЛЕОФИЛЬНЫЙ СПОСОБ ПОЛУЧЕНИЯ ОРГАНОФИЛЬНОЙ БЕНТОНИТОВОЙ ГЛИНЫ | 2022 |
|
RU2793853C1 |
Изобретение относится к способу получения полимерно-глинистой композиции, которая может быть использована в качестве сорбента для очистки и обеззараживания воды в различных отраслях промышленности. Способ заключается в том, что к водной суспензии бентонитовой глины добавляют активатор поверхности гуанидинсодержащую соль с четвертичным атомом азота. Далее обрабатывают активированную поверхность непредельной органической кислотой, акриловой или метакриловой кислотой, в присутствии радикального инициатора полимеризации персульфата аммония. Нагревание проводят при температуре 60-70°С при перемешивании до полимеризации непредельной органической кислоты. Активированную бентонитовую глину и непредельную органическую кислоту берут в массовом соотношении 1:1÷2. Изобретение позволяет упростить процесс активации поверхности бентонита, повысить сорбционную активность, улучшить эксплуатационные качества бентонитовой глины, а также придать композиции биоцидные свойства. 3 табл., 1 ил.
Способ получения полимерно-глинистой композиции для очистки и обеззараживания воды, заключающийся в том, что к водной суспензии бентонитовой глины добавляют активатор поверхности гуанидинсодержащую соль с четвертичным атомом азота, обрабатывают активированную поверхность непредельной органической кислотой, акриловой или метакриловой кислотой, в присутствии радикального инициатора полимеризации персульфата аммония, при этом активированную бентонитовую глину и непредельную органическую кислоту берут в массовом соотношении 1:1÷2, далее нагревают при температуре 60-70°С при перемешивании до полимеризации непредельной органической кислоты.
Ергожин Е.Е., Акимбаева A.M., Товасаров А.Д | |||
Пластические массы, №10, 2005, с.27-29 | |||
СПОСОБ ПОЛУЧЕНИЯ ОРГАНОМИНЕРАЛЬНОГО СОРБЕНТА НА ОСНОВЕ КЛИНОПТИЛОЛИТА | 2000 |
|
RU2167706C1 |
Способ получения сорбента | 1979 |
|
SU831168A1 |
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТОВ ДЛЯ ОЧИСТКИ ВОДЫ | 2004 |
|
RU2277013C1 |
Авторы
Даты
2009-08-10—Публикация
2007-11-07—Подача